
The Symbolics Genera
Programming
Environment

Janet H. Walker, David A. Moon, Daniel L. Weinreb, and Mike McMahon
Symbolics, Inc.

This Lisp-based system S ymbolics Genera is a mature soft- communication among workstations and
ware development environment access to servers.

helps designers get that integrates features normally * Hardware checking of data types,
from prototype to found in an operating system, its utilities, array subscript bounds, and uninitialized

product faster. The key and the applications running under it. An variables, performed in parallel with com-environment intended for developing putation and memory access.
is an open architecture large, complex software systems, Genera * Hardware-assisted automatic storage
and highly integrated also supports its own development and allocation and reclamation.
development tools. maintenance as a commercial product. Genera evolved expressly to provide full

tools. Genera's primary development lan- life-cycle support for major development
guage is Lisp, which is also its implemen- projects. It includes facilities for explora-
tation language. The environment we tion, development, communication, con-
describe in this article supports develop- solidation, documentation, testing and
ment in other languages, including Pascal, refinement, distribution, maintenance,
C, Fortran, Ada, and Prolog, but we con- and retirement. A detailed description of
centrate on Lisp. all these facilities is beyond the scope of

Genera runs on hardware designed to this article; our emphasis is on devel-
run compiled Lisp code and other lan- opment.
guages efficiently.' The hardware envi- Development
ronment has features that are critical to the
software environment: methodology

* A single-user workstation with a high- The development methodology sup-
resolution, bitmapped display and a ported by Genera could be described as
mouse. The display includes text, rapidproductizing, the rapid evolution of
graphics, and presentations of objects. software from early working versions to

* A high-speed, local-area network for final product.

36 0740-7459/87/1100/0036/$01.00 ©31987 IEEE IEEE Software

Some conventional views of software works and often survives in the final prod- involves the designer in a tight design-
development separate design, prototyp- uct. This functionality is important, to evaluate-refine loop.
ing, and coding as independent, serial understand the project requirements and To date, our experience has been with
stages.2 While this division is useful for further refine the design. project teams of about a dozen people. We
conceptualizing the variety of activities in are not talking about supporting design
a software project, we believe it falls short Complex problems. The evolutionary teams of 100 or 1000 people because we do
of describing the actual software- methodology is particularly well-suited to not believe that larger groups can work
development process. complex problems because it is in these sit- effectively on the same large, complex

In our experience, successful software uations that requirements are difficult to project.
productsevolvethroughoutdevelopment: state and interactions difficult to Our premise about the value of the
Early implementations lead to better understand. designer's time leads to a further set of
understanding of requirements, refine- We see two kinds of complex problems, assumptions that guide the design of the
ment of design, more implementation, both of which are particularly suited to development environment:
more refinement, and so on, until the development in our environment: (1) a * Support for complexity. Complexity
requirements are both well-understood new problem that no one has ever written in a working environment is manifest at
and well-implemented. a program to solve; and (2) a very large both the user and the artifact level. At the

problem with pieces that are simple user level, programmers must engage in
Evolutionary refinement. We follow a enough in themselves, but made complex mental time-sharing; they do several tasks

software development methodology of at once. At the artifact level, programmers
evolutionary refinement that has these need tools to manage the relationship of
major elements: the many parts of complex programs.

* Incremental design and implementa- Our major premise is * Support for community. People using
tion. We focus on the essential require- that the software independent workstations must be as close
ments first and elaborate on the details to each other as they would have been on
later, when the problem becomes better designer is a valuable a time-sharing system. They must trans-
understood as a result of the rigor enforced and limited resource. parently share files, electronic mail, entity
by implementation. names, incremental updates, and so on.

* Parallel refinement of requirements, * Automate the tedious. Because it
design, and implementation. The end allows many sweeping changes to a
product reflects a good understanding of by the sheer number of pieces and possi- developing system, the evolutionary meth-
the requirements, rather than features ble combinations. The second case is a odology could be prohibitively expensive
piled onto an early design that was based matter of information-management com- in human terms. To minimize the human
on an incomplete, initial understanding of plexity, such as when dealing with the sep- cost, a system must provide facilities to
the requirements. arate components of a several-hun- manage the details of program structure

* A single approach. We use the same dred-page document, not just numerical and compilation.
language for the prototype and the prod- complexity, such as processing ever-larger
uct. There is no point at which the proto- image arrays. Implemenation
type is "done" or discarded; there is no Requirements antloss of work or momentum from havingt and principles
change methods or languages during the principles One level down from our requirements
project. Our major premise is that the software principles are the principles that guide our

* A functional prototype. Many people designer is a valuable and limited resource. implementation choices:
regard a prototype as a facade - some- It is fundamentally important to the suc- * Data-level integration. All functions
thing that looks like the final product but cess of the project to use that person's time must be able to communicate through
either does not work at all or does not as effectively as possible. Furthermore, we shared data structures.
work like the final product. We view a pro- assume that most or all the people involved * Support for incremental change. Con-
totype as a perspective on the progress of in the project are designers (rather than stant, small changes must be supported in
the project rather than a separate effort. coders) under the direction of an elite designs, in work procedures, and in qual-
Code produced early in the design cycle designer. The evolutionary methodology ity enhancement.

November 1987 37

Generas
Genera is a descendant of software developed as part of the Lisp Machine proj-

ect at the Artificial Intelligence Laboratory of the Massachusetts Institute of Tech-
nology (the Al Lab). The goal of the Al Lab is to support researchers doing
innovative things with computers. When the Lisp Machine project began in 1975,
the Al Lab's chief computational resource was a Digital Equipment Corp.
KA-10-based time-sharing system. Its hardware constraints were limiting much
of the work done at the Al Lab. The Lisp Machine project was undertaken to address of other objects, and (2) behavior informa-
the problem.1 of ollectioandc(2)nsehat dn
The primary goal of the Lisp Machine project was to build a computer capable tion, a collection of functions that define

of high-speed Lisp execution in a large virtual memory, one that was both appro- the actions that can be performed on the
priate and practical to supply as a single-user computer to each researcher. The objects.
project focused on architectural support for efficient, compiled Lisp execution, Objects are self-describing in the sense
while retaining the full error-checking of interpreted Lisp. The machines were that each object knows its data type.
designed to be connected by a local-area network for file access and resource Examples ofobjects defined by the devel-
sharing. opment environment include the source
The software development envi ronment was i nfluenced i n itially by the Al Lab's text for a section of a program, a compiled

system - which was based on the MacLisp language,2 the Emacs text editor,3 function, and a network of interdependen-
and the ITS time-sharing system - and had been augmented by many personal cies among sections of a program.
tools. Another influence was the early work on Altos done at Xerox PARC, from Dierent progransof a under-
which we learned about windows, mice, and networks. We also borrowed ideas Different programs can easily under-
from other systems, including Multics and Tops-20. stand and use each other's objects because
The Lisp described here is Symbolics' implementation of Common Lisp,4 thememorytheysharecontainstheseself-

extended with exception handling and Flavors.5 Flavors provides the abstract describing, application-oriented objects.
data types and generic operations of an object-oriented programming language, In traditional systems, programs commu-
like Smalltalk.6 Many system facilities use the object-oriented programming par nicate through a pipe, an interchange for-
adigm, and tools in the environment support that paradigm as well as the conven- mat, or a clipboard. Figure la illustrates
tional Lisp programming paradigm. some models for sharing data between two

Symbolics was founded in 1980 to commercialize the Lisp Machine technology programs. Figure lb shows the shared-
and to continue development of the hardware and software system. Since then, object model in more detail.
one major new architecture and four major software versions have been shipped. Multiple processes can work simultane-
This article discusses concepts as instantiated in Genera 7.1, the most recent soft- ously on multiple activities in multiple win-
ware release.
Genera is running on about 3500 systems. It represents more than 10 years of dows and, because of data-level

experience and refinement, based on intensive real-world use and user feedback. integration, all work on the same object
base. As a result, traditionally separate
utilities are very tightly integrated: The edi-

References tor can invoke the mail-sending program
1. R.D. Greenblatt et al., "The Lisp Machine", in Inte.active Programming Environments, D.R. on a buffer; the mail-reading program can

Barstow, H.E. Shrobe, and E. Sandewall, eds., McGraw-Hill, New York, pp. 326-352. invoke the compiler on a function defini-
2. K.M. Pitman, "The Revised MacLisp Manual," Tech. Report MIT/LCS/TR-295, Mas- tion in a message; the debugger can invoke

sachusetts Inst. of Technology, Cambridge, Mass., May 1983.
t

3. R.M. Stailman, "EMACS: The Extensible, Customizable, Self-Documenting Display Edi- the on-line documentation system to
tor," SIGPlan Notices, June 1981, pp. 147-156. explain a function in the current frame,

4. G.L. Steele, Jr., Common Lisp: The Language, Digital Press, Burlington, Mass., 1984. and so on.

5. D.A. Moon, "Object-Oriented Programming with Flavors," SIGPlan Notices, Because these different tools operate on
Nov. 1986, pp. 1-8. the same object in memory, the person

6. J. Diederich and J. Milton, "Experimental Prototyping in Smalltalk," IEEE Software, May using them does not have to perform any
1987, pp. 50-64. manipulations to make the data from one

tool available to another. In this way, the
software more nearly supports the human
view of the program - a set of tangible

0Open system. The software must never Data-level integration objects that really exist inside the
restrict the designer's grasp- all parts of Genera can run any number of computer.
the system must be available to designers processes at once, all sharing the same vir- Having this level of data integration
for extension or replacement. tual memory. This shared memory is available encourages programmers to

* Reusability. All parts of the system treated as a set of objects, not as raw bits design generality into their data structures.
must be both available and locatable by or bytes. The data used by programs and As a result, their programs can integrate
designers to be used, modified, or the program functions themselves are all smoothly with other programs and can be
extended by small modular additions. objects in memory. extended easily in minor ways. This is the

* Extensibility. Users must be able to Simple objects include scalars (such as bedrock principle uponwhich the rest of
tailor the work environment to support numbers and characters) and data struc- the system is built.
their own styles and preferences. tures (such as lists and arrays). More com-

*Self-revealing. Information about the plex objects include application-specific Incremental change
internal workings of the system must types, whichcomprisetwokinds ofinfor- Complex, experimental software sys-
always be visible or available. mation: (1) state information, a collection tems are too large to work on all at once.

38 IEEE Software

Various strategies have been devised to
help designers manage this complexity by r
dividing the work into small steps, each
small enough so they can understand it
fully. This divide-and-conquer principle K
emerges in our methodology in three areas:E
design, quality enhancement, and pro-~
cedure.

Design. As the system design evolveso
the designer transforms the software froma
one stable state to another, one step at a
time. The software emerges as a sequence C
ofprograms,eachofwhichcandosome- 5b>K£
thing and is partially complete. At each
step, the designer can run the program and
see what the results of the changes were, S
using the feedback to decide whether to
change direction or proceed to the next
step. This cycle of incremental feedback
and guided design is used not only for early use t ...

experiments but for the entire program
development.

It is important to realize that the Howhto
designer must have an overall design for
the system when this process starts.
Incremental design does not mean that you ct
make it up as you go along! It does mean
that the overall design can be modified to
a slightly different overall design, which pe2
might mean backing up and rewriting por-
tions of the software. xIncremental devel-
opment does not replace the need for Procdure G
careful software system design. But it does ~
let the design be modified promptly, based
on early feedback, so the designer can
spend less time implementing inappropri-
ate designs. The result is increased produc-~
tivity. Figure 1. Comparing models of interprogram communication. (a) Programs

can communicate in different ways; (b) in Genera, they use the same data for
Enhancement. In the early stages of interprogram communication as they do for computation. This approach com-

software development, the designer learns bines object-oriented shared memory with well1defined protocols for classify-
whattherequirementsreallyare, finalizes ing objects and operating on them. Each object has a type (which it knows)
the design, and roughs out an implemen- and a series of slots that hold either simple data objects or other complex
tation. In the later stages, the designer fills objects. The programs are made up of a set of functional modules. Different
out the design. The quality enhancements programs can contain different methods for operating on the same objects,
added at this stage are those needed to represented with "How to ."'~labels.
transform a program into a product.
These include improving the design of the
user interface, changing data structures to ment. The prototype is not thrown away, compile an individual function, then
improve performance, and improving the it becomes the product. immediately run the function alone to test
handling of errors and exceptions. Each it. Because so little is being compiled, the
step can be done incrementally, without Procedure. Genera's software tools compilation is fast. Linking and loading
major changes or rewrites. Again, the pro- operate on individual definitions instead occur automatically as part of compila-
gram can be tested between each incre- of files. For example, the designer can tion, providing fast interaction for

November 1987 39

developing the design, enhancing quality, cultural as technical; some programmers 1. Use what's there. The system pro-
and fixing bugs. remove superseded functionality, others vides a huge set of capabilities, from high-

Traditional environments require that do not. level substrates to very low-level primi-
entire files or groups of files be compiled. tives, all equally accessible.
Therefore, compilation and relinking take 2. Use what's almost there. Designers
a long time, and designers batch the Open system can take what the system provides and
changes between each recompile. This Genera places no barriers between the extend it by adding some operations or
forces designers to keep track of too many system and the user; it has no protected exploiting some hooks. The Flavors
details mentally, with the potential for los- core or kernel. Everything (functions and object-oriented programming system was
ing the train of thought. In addition, they data) is in the same virtual memory - any designed specifically to meet the goals of
might be tempted to do other work - or function written by the user is just as good abstract data integration and extensibil-
get coffee - while waiting for the compi- as a function provided by the system. Sys- ity.4 With Flavors, several specialized ver-
lation, impairing concentration. Because tem and user programs are written in the sions of an existing data type can be
designers are the limiting resource, pro- same language using the same develop- created without interfering with each other
ductivity is not enhanced by such envi- ment tools, call the same facilities, and are or with the original type. Also, designers
ronments. invoked in the same way. Figure 2 illus- can create specialized versions of program

Careful evolution of a design from one trates the difference between open and functions without having to understand all
stage to the next need not result in much closed systems. of the original program or modify its
vestigial code (also known as "temporary Software designers can approach an source code.
hacks and kludges"). This issue is as much open architecture three ways: 3. Replace what's there. Major parts of

the system can be (and have been) replaced
by users interested in exploring research
issues or enhancing performance in special
situations. The open but layered structure

m:s:;0X12000'15 ?;5WS0000S X|allows higher level interfaces to be
bypassed in favor of lower level interfaces.
As a very simple example, a programmer
can provide an alternate file system, using
documented disk-access primitives.
How can a system work reliably without

programs sharing the single virtual address
space interfere with each other?

First, data-level integration (the mem-
ory contains objects, not just bits) ensures
that programs agree on the semantics of
shared objects.

Second, hardware support prevents the
most common ways buggy programs dam-

40.... age other programs in traditional systems.Runtime array-bounds checking prevents
wild stores. Data-type checking detects
both uninitialized pointers and data struc-
tures not in the assumed format. Auto-
matic reclamation of unused storage
avoids manually reclaiming storage that
might still be in use.

E~~~~ L I ~~~~~Finally, a program can extend or replace
part of Genera for its own purposes with-

V MM TV ~~~~~~~outinterfering with the operation of other
programs. The principal mechanisms for

Figure 2. Comparing closed and open systems. The components of a closed extension are per-process dynamic state

system like Unix are not visible to anything outside the kernel. In an open Sys- and flavor specialization (described
tem like Genera, the facilities available are designed at different levels of above). Replacingpartoftheopensystem
abstraction but can be called from any layer. is usually done by bypassing the original

40 IEEE Software

(rather than removing or changing it) so it spread use of reusable software. There is Extensibility
remains available to other programs. nothing second-class about user code- a Genera's tailoring facilities, a benefit of

reusable module written by any developer the open architecture, are based on the

Reusability behaves exactly like a reusable module belief that a happy user is a more produc-
Reusing software dramatically reduces provided by the system. tive user. The more an individual's work

development time. A large software prod- Dynamic linking in a single, shared vir- style and preferences can be supported, the
tualaddessspae mkesit asyfor oneuct has many pieces, many of which have tual address space makes it easy more productive we expect that person to

been built before for some other purpose. module to call another and allows a single be.
Building a new product from existing copy of a module in virtual memory to be In Genera, users are free to extend the
pieces reduces the size of the new job. shared by many calling programs. For system with as many new functions, com-

In an open architecture, many modules example, there is only one copy of the mands, and utilities as they want. This
are available that are both reusable and hash-table module in virtual memory even capability currently is supported with sim-
designed to fine-tune new applications. though many unrelated applications use it. ple login and application-specific init files
For example, Genera includes modules Ironlcally, one barrier to the reuse of that are loaded at login or program start-
that implement sorting and hashing. Every modulesin practice is the ease of develop- up time.
system function that needs these opera- ing facilities, even sophisticated ones. We recognize that discussions of exten-
tions uses these modules and any user pro- Programmers often find it easler to reln- sions and customizing must take main-
gram would, too, because they are all ventthantolookfortherelevantreusable tenance into account, so we provide
documented. code. several strategies for managing customi-
Some aspects of Genera promote reus- zations:

ability: * Most system facilities implement
* Visibility. Every function in the system Genera's design philosophy different user styles with settable variables.

is always available in virtual memory. holds that no action of the For example, when a user tries to edit a file
There are no loadable program libraries software should be hidden that doesn't exist, should the system cre-
that can bring special-purpose or poten- frm the ate a buffer for a new file or refuse the
tially conflicting routines along with the designer. request? There isn't one right answer, and
ones the programmer needs. Several facil- different users feel very strongly that their
ities let programmers explore the space of answer is the correct one. In this situation,
available functions to find ones that are Reusable modules are not limited to Genera would 6ffer both facilities under
good candidates for reuse. For example, low-level facilities such as sorting and control of a variable.
the Find Symbol command lists any defi- hashing. An example of a high-level reuse * Some facilities provide hooks that let
nitions in the system whose names contain is the extensibility paradigm of the user- users specify custom procedures that run
a particular string; another command does interface management system. User input when a particular function is invoked. For
the same kind of search of the on-line and output interactions are handled by a example, many users attach a routine that
manual. system ofpresentation types. For example, deletes duplicate messages to the hook for

* Direct access. Customers can pur- when a host name is displayed on the incoming mail.
chase source code for many system facili- screen, it is not just characters, but a * One facility lets users wrap their own
ties, and various commands link compiled presentation of the internal object functionality around a particular system
definitions to their source locations, giv- representing that host.5 function by telling it to do "something
ing the designer direct access to relevant The user operates on the object by extra" in addition to its actual definition.
reusable code. pointing the mouse at the presentation. A The something extra (which we call advice)

* Generality. System modules are function collects input from a user, not by can be done before, after, or around what
designed to be reusable. For example, for reading a series of characters but by the function is defined to do. The advice
a hash-table module, (1) the keys and accepting an object of a specified type, and the definition are independent, so
values can be any kind of data object; (2) such as a host. The system takes care of changing either one does not interfere with
you can provide a function to compute the reading characters, allowing the user to the other.
hash code; (3) it automatically selects an point with the mouse at an acceptable
appropriate storage-and-access algorithm presentation, checking for errors, com-
depending on the table size; and (4) it lets pleting partial input, and offering context- Self-revealing
you specify if operations on the hash table sensitive help. To build a new application Along with the open architecture,
should be locked so they are atomic to interface, a designer implements a set of Genera's design philosophy holds that no
other processes. Lisp's provisions for run- application-specific presentation typesand action of the software should be hidden
time type-checking and procedures as associated commands that form a seamless from the designer. This has led both to a
values make this possible. extension of the predefined presentation principle of "maximally informative inter-
Genera facilitates and encourages wide- types. faces" and to a commitment to supply

November 1987 41

TRITE-FORMS-TIO-STREAM - ------------------------

I (deCor orlts-for,s-to-stres,, (forts strear)li ;
El(cr11eTr........R,sstre.s pretty 541 :tlrtle toii00k0

N(tta"Sbck-F,WRITE PC.54> 10;)
NySteck-Fr re WRITE-FORTs-Ta-STRERT PCzll>

r9s: Locals;;g09050 1raFTM(FoRr):((((R!.)))1~0((d aH))) ;Multiple processes,
R,-g 0 R(srRERM) _I ESC0PE-) U

multiple activities
* WRRITE-FoRS-TO-STREMr ((s) (51) #tI:IMDlIRECT-ESCOPE-IUTPUT-STRER. c Relypyre At the software level, Genera supports
(WRITE (Il) (RIPRSI:IMDIRECT-ESCRPE-OUTPUT-STRERM 70:RsT ley.neert 7I

debogger. stating Tn error context . multiple independent processes in a single
yrcsTr.1 l CIstener 1 LIstener 1 address space with a simple priority

*000 0iiii0 0i :i scheduler.
Wat Eror T,,CCO "Iun RE 9 R,.yArgliht Edit Th=ro Sctha tri--blTdNI i . . Users develop a rich model of the differ-

Ut..k..s. kTh-rd ta WRITER IsDIInIRECT-ENI.PE-OUTPRT-STRER U:1Ripyo.Ji
.p 77142363, ~~~~~~~~~entactivities they engage in and the

.0000 nw x lnesmethods for carrying out different activi-
Eirny RU.k-o_ keoia.id to lUTE:, itllBlREEt-EtC4PE-OUtRPT.-TFtl4T SieYtEln.est- 71416I)ties at the sametime.Asfarasusersare
MITE:Sr. T(CLI:iOBJECT), ((X) i.. . . . concerned, some activities occur in paral-
R- sr.n (CLl: KEYWOQB-RrS).: IWRSIiINDrRECT-EsCAPrE-oUTPUT-sTRENM * 77142363: :PRETTY NIL

s-: Rtt,-RyOanc LL rR.rn *to Toy LeoeTl)OenltL.sp LT.t.. i. . . lel, such as editing a file while compiling
o 51 ndoa Iebo,9g vr . n-n .v ener 00f;00 another file and loading incoming mail in

.iE : ;the background. In other cases, the usersDI,SaRlO Llap.IRPOTR .*. * *. ~.*. *.vie what they are doing as moving from

;0:;St I111111lil1111lilllll ^ activity to activity, dropping one to resume
another.
Genera supports this mental view by

Figure 3. (a) The user, testing a Lisp function, encounters an Unknown Key- concurrentlymaintaining the stateof any
word error and (b) enters a command to invoke the Window Debugger (c) which number of processes. The user doesn't exit
starts the debugger process with the error message visible. (d) The source code one and return to command level to start
for the erring function appears with the erring line highlighted. The user can or resume another, but instead just selects
look at stack frames, arguments, local variables, and any other aspect of pro- the process that will implement the next
gram state. The user can not only examine the state, but can also modify it activity. The process starts up again at
using source-language code. In this case, the user decided to fix the function exactly the same point the user left it.
containing the bad call to [write] and so asked to edit the function [write-forms- This structure of multiple independent
to-stream] by clicking on the Edit command. processes is a strong foundation for the

activities involved in software develop-
ment. The screen images in Figures 3-5
show a simple example of how a user
approaches debugging a problem, switch-

feedback, support exploration, and supply any aspect of the current state of a complex ing from one process to another and finally
documentation. data object. resuming a process that had previously

Without any user action at all, the fol- Most importantly, users can always sus- entered the debugger. The repairs are
lowing status information is always visible pend any computation at any time and use made with the normal source language,
at the bottom of a screen, as shown in the debugger to inspect the data objects, not some error-prone, numeric, patch-up
Figures 3-5: date and time; running pro- the call stack, and other aspects of the cur- technique. In very large computations, a
cess name; current package (the context in rent computation. Again, this capability is user can gain a lot of productivity from the
which symbols are read); state of the cur- made possible by data-level integration - ability to repair the state of a running pro-
rent process; progress of file writing, com- the debugger has access to the objects and gram rather than having to restart it.
pilation, or other lengthy computations; state of the suspended process.
and function of each mouse button, based Several kinds of context-sensitive Genera evaluation
on the position of the mouse and the state documentation are available. Any time a Designers moving from other environ-
of the program. programmer is typing a function name, a ments to Genera report gains in both per-

single-key command displays either its sonal productivity and job satisfaction.
In addition, the Peek utleity displays the arguments, using information that it gets We believe this is due to

states of all processes, windows, network from the compiler, or its full reference * data-level integration, which permits

conetion, servers,anewor hos documentation, supplied by Document the construction of integrated, com-
tual memory areas, and so on. Examiner (the utility that manages on-line municating tools, directly resulting in less

Several utilities let users examine data documentation). Mouse-button documen- mental overhead;
structures, either statically or dynamically. tation is generated automatically by the * reusability, which lets designers start
The Flavor Examiner shows definitions, user-interface management system. As a from a much higher base - the major
inheritance relationships, and methods in user moves the mouse across the screen, effort goes into understanding the appli-
the object-oriented programming system. the mouse documentation line changes cation requirements instead of building
The Inspector lets users see or manipulate with the nature of the object beneath. subprimitives to support the tasks; and

42 IEEE Software

LROTE-FORMS-O-STRE_TM

CeriSe E. .st st-rnep!re*ttee li sir;=eis)) .0 .0
RoiSel 0 1 ' jsc

t~~~~~~~~~V*{U 5
l SEsok-efar'e IIE PC'54>

RR8St skFraneURsITE7F0RMh7T-ITQ-
i POi:S -it. obiost Skey otr-ewseoepe redlo b.e circle ftty ie-e) Ieath

Pros, opec ~~~~g-oyw easy redbly seay-Ieath etriog-J.,th bit-entr-Ienth

the open architecture, which lets Fv.0 (n,otreRE.S), t-tttebeIRY_at-qote 0 o is wr to the output
str-n spe-ifid by strea , which efaults to the -alue

designers explore an idea as far as their ;i
The other keyword erg-..tent ep-ify o-ice used to -otroi the

own creativity takes them, rather than as (vRITE-FORMSiTp EF (te 0) rmk- f th. p,lm.d E d.f..1t. t. th.
(wRITE, (() pt et,TMINDRECT-E orepniggoe oihe e *p,iet.... p.eSpr-i.t-redl-, *

far as the system's designers will let them II) II) t - pr1int-b..e-, epepftloTr.eI prie5-pretty priet-i-vet5.
go. T L~~~~~~~~~~~~~~05c,tonr .*5... I.e,Q-in, *pr;t-I.egyit,p,I,t-dc b1y,ere~eeego. e vr ;o tfso o evel fn Dvn t1 *eprles. a.- y-

. .dgthb--Iyt .tH g -I..9th*,
Genera's approach ls not wlthout haz- ;. f ~~~~~~~*prlnt-.bbr.vl.t.-quot.- Note that the printing of symbols is;

Genera's approach is not without haz- ioftdb Tb.eue of the neribie 5pke.torts.ards. Specifically, we have encountered "trri: in3ect9 *e bfct. For-stepi - Ts-ple.er:nO
four major classes of problems, one rrE.,, ,se5;,.dt ileOT SO
unique to an open system, the others com- > lisaSt f feisn oronotfl
mon to all software environments but .I_eEr- ebzk resere et-0 i °°P th-opn-fflet(eree, ffl)1

exacerbated by the open architecture.o I *ir ith-op.n-fls. (etre.. oPtfi. dir tIo.othput)
1. Open systems have no ''keep out''" . sn r TI,EdM fre &rEs,00

signs. An open software architecture is a R-.tRee,ert s1TtS, ferns ..re.e pre-tO n11 0)relI
boon to those who understand its risks. . lo Ooovnetf n for_
But without a system/user distinction to ..DyOyh.titeP.AALA/teef .1

warn them off, users often choose to solve
a problem using primitives instead of facil- *
ities more appropriate to their problem.

2. In an open system, documentation Figure 4. (e) Clicking the Edit command calls the editor process, with the code
typically bears the responsibility for for [write-forms-to-stream] showing in the buffer. (f) Because the user is unsure
describing the levels of abstraction and the how to fix the problem, the user invokes the on-line documentation for the
protocols for using appropriate levels of [write] function. Satisfied with the explanation, the user changes the erring
functionality for a problem. Writers have function, recompiles it, and returns directly to the Lisp Listener window.
a significant burden to make the documen-
tation of internal functions as accessible as
their code.

3. The system software has been
designed with calling interfaces at various
levels of abstraction. Unfortunately, the
boundaries between the layers of abstrac- l OtoflteFil.(flse [defe1o1 0:eimpoPb.1ieo.Op.nesl ioseo_v Oiob.o

tionaremostly invisible, with no formal ;Vtkd. kefeortd t. RRITE: I. .IRECT-ESCRPE-ITPUT STRERtf .. -II....V 1212230B00

definition. Both customers and system WIre a (CLI, TGJECT): (iei eii
I Res -r ICLIi,EYWIORD-AtGci, ieiSlI,OHIRECI-ESCRPE-OUTPUT-STREAn '5 122203001i :PRETTY MIL

developers have difficulty choosing a level :IC.-E Rtornt List Too LeI:TL)E Lisp LIstener
of abstraction for a problem and staying to P""-' on-rceene (Tu

in its boundaries. Y. e RITE-Fo RS-O-SRnoErIOi-e.. 0) CT-EspEUT STRERM

Written O,ilieeyio..I-,..4. When all system levels are open, 0

compatibility becomes a difficult
philosophical problem. Users want the
software to evolve and improve, but at the
same time they want their own code, based
on changes to its internals, to keep work-
ing. Because of the extremely high level of
integration, it generally isn't possible to
support both old and new approaches in

parallel. We have no magic solution to
these inherently conflicting interests.

Future directions I wDy Lisp WIste
We anticipate several major new direc-

tions for Genera, in areas that may roughlyn
be called databases, version control0 and -
user interface. In reality, these are exten- Figure 5. (g) The computation that encountered the error is sti l i n its orig i nal
sions of concepts already embodied in the state. (h) Having already fixed the error, the user reinvokes the function that
system. had the problem and resumes the computation using the corrected function.

* Databases. Currently, data that per- Any erroneous invocations further up the call stack are repaired similarly.

November 1987 43

Data-level integration
Genera's programming environment rests on a rich set of information main-

tained by a number of agents, as Figure A shows. Programmers can remain largely
unaware of the information structure underlying the commands they use, but this
complex structure has profound implications for the capability available to them:

* The compiler maintains a database of caller information, which the editor uses
to let the user edit each caller of a function. As a result, cross-reference programs,
concordances, and program listings are not needed. sist between sessions are stored in files that

* The com piler maintains a database of source locations, which the editor uses
to let the user edit functions by name. The debugger uses the source location infor- act just like their counterparts in conven-
mation to support single-key commands that invoke the editor on the function for tional systems. This is an unnatural sepa-
the current stack frame. As a result, programmers need not be aware of file names ration between usage format and storage
or particular file structures. format, requiring many programs to have

* The compiler maintains a database of argument lists. The editor, debugger, modules for parsing and printing files to
and othertools use this information to offerfast, abbreviated on-line help about get their application-specific data in and
arguments. Programmers need not memorize call sequences because they can out. We could remove this burdenby using
always be retrieved quickly and correctly. an object-oriented database to introduce

* The editor maintains a structured view of source code, so users can compile persistent data-level integration.
only the definitions that have changed in any particular buffer. Programmers can
make several related source changes and then incrementally (but not manually) * Version control. Currently, Genera
compile only the definitions that have changed. uses a file-based system to manage multi-

* During compilation, the compiler maintains a database of warnings and mes- ple versions of software sources. A data-
sages, which the editor uses to offer a command to deal with the warnings. The base of code objects would provide more
editor puts the message in one buffer and the relevant source code in another. flexible and powerful facilities for control-
Programmers need not write down error messages or find the relevant definitions ling and auditing changes.
manually. * User interfaces. Presentation types act

* The configuration manager (labeled SCT in Figure A) maintains a database as a formal mediator between users and a
both of the f i le names and f i le versions that constitute any software system and ,
of the various compile- and load-time dependencies between the files. This data- program's data. Currently, an application
base is used in full-system compilations, in incremental patching, in system dis- program determines the appearance of
tribution, and so on. As a result, programmers are freed from manual operations presentation objects. By adding the con-
and costly errors in shipping software products. In addition, many operations can cept of viewspecs, both user and program
be performed on a system without the programmer needing to remember any of could be given independent and dynamic
the files that it contains. control over such aspects of the appear-

ance of data objects as the level of detail

de,flnltion displayed or the language used.

enera's integration of diverse
s~r $Gdevelopment activities is made

possible by sharing virtual mem-
ory data objects among all processes in a

S\ 1_machine. An open software architecture,
without the conventional user/system dis-
tinction, allows exceptional flexibility and
code reusability. Specialized high-level
substrates for areas like user interaction

I ~~~~~~~~~~~~~~~~~~~alsofoster reusability and substantially
, Ss S8e 1 @ ' reduce conventional design burdens on* Compiler ~~~~~~~~~~~~~~developers.

I We believe the future lies in extending
I ss/data-level integration beyond the realm of

I s S u @ normal program-created data. -6-

I
-

Q Tools -_ Invokes
Info/data ~~~~---*, Dataf lowa - * Knows about

Part of

FligureA. The Genera programming environment. The primary agents are the editor, Acknowledgments
compiler, and debugger; secondary agents are the software configuration- ManypeoplehavecontributedtotheGenera
management tool (SCT) and the command processor (CP). Rectangles represent software system and to our continually increas-
data maintained or used by the tools. For example, the compiler uses source code ing appreciation ofthe methodology it supports.
maintained by the editor to produce object code, which consists of the code plus Wethank our coworkers at Symbolics, past and
auxiliary information. This information, maintained incrementally by the compiler, present, for their vision, hard work, and unfail-
is used by both the debugger and editor. ing enthusiasm. We thank our users for their

patience and constructive feedback.

44 IEEE Software

If STRUCTURED ANALYSIS is

your passion,you'll love

References
1. D.A. Moon, "Symbolics Architecture," Computer, Jan. 1987, /

pp. 43-52.
2. B. Boehm, Software Engineering Economics, Prentice-Hall,

Englewood Cliffs, N.J., 1981.
3. F.P. Brooks, Jr., "No Silver Bullet: Essence and Accidents of TE DATA DICTIONARY

Software Engineering," Computer, April 1987, pp. 10-20.
m tool

4. E.C. Ciccarelli, "Presentation-Based User Interfaces," MIT AI you've wished for!
Tech. Report 794, Massachusetts Inst. of Technology, Cam-
bridge, Mass., 1984. l Syntax checking for data consistency

* Makes global changes
* Alphabeti1zes automatically
* Menu driven and configurable
* Tailored automated documentation
* Automated creation of sub-definitions
* VAX EDT-like editing of data structures
Keeps LARGE PROJECTS under budget!

Janet H. Walker is a principal member of the technical staff at Sym- Powerlul, Productive, Fast!
bolics, Inc. Her research interests include user interfaces for software . .$2995
and document development environments. Ada and Pascal type declarations
Walker received a BSc from Carleton University (Canada) and the created with MkTTM option ... $995

AM and PhD in cognitive psychology from the University of Illinois
at Urbana-Champaign. She isa member ofACM and the Computer P0 Box15367
Society of the IEEE. SCB Inc. FORT WAYNE, IN 46885 219/432-3975

Reader Service Number 4

SIMULATION RESEARCH
GROUP LEADER
The Simulation Research Group at Lawrence

David A. Moon is a technical director and founder of Symbolics, Inc. Berkeley Laboratory is at the forefront of state-of-the-art cornputer simulation of energy use in
He has been a hardware designer, microprogrammer, and writer of buildings. We are seeking a Group Leader to man-
manuals at Symbolics. His interests include advanced software devel- age a staff of 7-8 professionals and students in
opment and architectures for symbolic processing. development of a next-generation UNIXtbased
Moon received a BS in mathematics from the Massachusetts Insti- software system for creating customized simula-

tute of Technology. tion programs. The initial focus will be simulation
of building energy systems; applications to other
types of physica[and biological systems are
planned for the long term. Responsibilities also
include directing the maintenance and enhance-
ment of DOE-2, an existing program for building
energy use simulation which is used worldwide.

Applicants must have a PhD in science or engi-
neering and a strong background in state-of-the-
art computer science, including languages, data
structures, object-oriented programming, and
software engineering. A demonstrated ability to

Daniel L. Weinrebis a technical director and founder of Symbolics, managesoftwaredevelopment projects is required.
Inc. Previously, he was director of software development at Sym- Experience with simulation of energy use in

bolics. His research interests include software development environ- buildings is desirable but not required.
ments and object-oriented databases. Salary range is $3032 to $7722, depending on
Weinreb received the BS in computer science and engineering from experience, with excellent benefits. Interested

the Massachusetts Institute of Technology. applicants should submit two copies of resume
and publication list to: Employment Office, Bldg.

Mike McMahon is a technical director and founder of Symbolics, Inc. 901042, Job #C/3R91, LawrencreB9erkleY a r
His research interests include advanced user-interface tool kits and Opportunity Employer, M/F/H.
next-generation software development environments.
McMahon declines to name academic or professional affiliations. 'UNIX is a trademark of AT&T Bell Labs.

Questions about this article can be addressed to the authors at Sym- LW N
bolics, Inc., 11 Cambridge Center, Cambridge, MA 02142. LAWRENCE

No e 18 LBERKELEY
November 1987 LABORATORY

