
The Persistent Object System MetaStore:
Persistence via Metaprogramming

Arthur H. Lee

UUCS-92-027

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA

June 10, 1992

Abstract
Object-intensive applications require persistence of complex objects. Many of these applica
tions also use vast amounts of data, often exceeding a machine’s virtual memory. MetaStore
is a portable, persistent object system designed to solve these problems.

MetaStore uses the metaprogramming facilities of the metaobject protocol to add per
sistence to the Common Lisp Object System. This approach leaves the semantics of CL OS
unchanged, requires only minimal syntactic changes to existing programs, and needs no com
piler support. In the resulting language, programmers can define both classes and slots to
be persistent. MetaStore then handles persistence at the metaobject level.

MetaStore focuses on the persistence of passive data by providing a virtual object mem
ory. It tries to keep an appropriate number of objects in memory to maintain system per
formance at an acceptable level, and allows programmers to tune performance by specifying
object and slot clustering. MetaStore currently supports only limited aspects of class evolu
tion.

MetaStore addresses a range of issues in implementing persistence, including object iden
tity, addressing mechanisms, shared objects and structures, dirty bits, queries, transaction
management, version control, object base garbage collection, and object clustering.

Based on the initial implementation of MetaStore, we show performance measurements
and propose improvements to the metaobject protocol of CLOS. CDRS CAD system, an
object-intensive application at Evans & Sutherland Computer Corp., will soon be ported to
MetaStore.

by

Arthur H. Lee

The Persistent Object System MetaStore:

Persistence via Metaprogramming

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

The University of Utah

August 1992

Copyright © Arthur H. Lee 1992

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Arthur H. Lee

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

/*7f2L

<9 ,
Ganf/E. Lindstrom

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of The University of Utah:

I have read the dissertation o f___________ Arthur H. Lee___________ in its
final form and have found that (1) its format, citations, and bibliographic
style are consistent and acceptable; (2) its illustrative materials including
figures, tables, and charts are in place; and (3) the final manuscript is
satisfactory to the Supervisory Committee and is ready for submission to
the Graduate School.

. .-Aae*- _________________
Date Jos\ej>h) L. Zash#ry ^3

Chair, Supervisory Committee

Approved for the Major Department

" I KflMAfl-4 C- U&asI za S
Thomas C. Henderson

Chair/Dean

Approved for the Graduate Council

S. j&Lu A c t
B. Gale Dick

Dean of The Graduate School

Abstract
Object-intensive applications require persistence of complex objects. Many of

these applications also use vast amounts of data, often exceeding a machine’s virtual

memory. MetaStore is a portable, persistent object system designed to solve these

problems.

MetaStore uses the metaprogramming facilities of the metaobject protocol to add

persistence to the Common Lisp Object System. This approach leaves the semantics

of CLOS unchanged, requires only minimal syntactic changes to existing programs,

and needs no compiler support. In the resulting language, programmers can define

both classes and slots to be persistent. MetaStore then handles persistence at the

metaobject level.

MetaStore focuses on the persistence of passive data by providing a virtual

object memory. It tries to keep an appropriate number of objects in memory

to maintain system performance at an acceptable level, and allows programmers

to tune performance by specifying object and slot clustering. MetaStore currently

supports only limited aspects of class evolution.

MetaStore addresses a range of issues in implementing persistence, including

object identity, addressing mechanisms, shared objects and structures, dirty bits,

queries, transaction management, version control, object base garbage collection,

and object clustering.

Based on the initial implementation of MetaStore, we show performance mea

surements and propose improvements to the metaobject protocol of CLOS. CDRS

CAD system, an object-intensive application at Evans & Sutherland Computer

Corp., will soon be ported to MetaStore.

To Joyce, Chris, and Jamie.

Contents
Acknowledgments..xiii

1. Introduction... 1

1.1 Object Persistence... 3
1.1.1 CDRS: An Object-intensive Application................................ 3
1.1.2 Understanding The P rob lem ... 4

1.2 Related Work ... 6
1.2.1 Interlisp .. 6
1.2.2 P S -A lg o l.. 7
1.2.3 M nem e... 8
1.2.4 P C L O S... 9

1.3 M etaS tore ... 10
1.3.1 Research Goals.. 10
1.3.2 Language Extension via Metaprogramming......................... 11
1.3.3 Persistent Object S to r e .. 12
1.3.4 MetaStore Architecture.. 13

1.4 Roadm ap... 13

2. Preliminaries.. 15

2.1 Object-Oriented Programming.. 15
2.1.1 Encapsulation.. 16
2.1.2 Dynamic B in d in g .. 17
2.1.3 Inheritance... 19

2.2 Persistent Object M odel... 20
2.2.1 Mandatory Features... 21
2.2.2 Optional Features.. 22

2.3 Metaprogramming... 22
2.4 Persistence Schemes... 25

2.4.1 Addressing Mechanisms.. 26
2.4.2 Incremental S aves.. 26
2.4.3 Shared Structures.. 27
2.4.4 Orthogonal Persistence.. 29
2.4.5 Selective Persistence... 30
2.4.6 Granularity of Persistence... 31
2.4.7 Portability... 31
2.4.8 Summary.. 32

3. Language Extension via M etaprogram m ing...33

3.1 Overview of M e t a .. 33
3.2 Programmer’s View of MetaStore37

3.2.1 Programming C onventions.. ...37
3.2.2 Semantic C hanges.. ...39

3.3 Object Identity39
3.4 Object Persistence..40
3.5 Structure of Memory O bjects... 41
3.6 Husks and Granularity of P ersistence... 42
3.7 Addressing Mechanisms... ... 44

3.7.1 Associative OID Addressing 45
3.7.2 Pointer S w izz lin g 45

3.8 Metaobject Protocol in A c t io n 46
3.8.1 Persistent Class Metaobject C la s s 47
3.8.2 Creating Persistable O b je c ts 48
3.8.3 Persistence via Inheritance.. ... 48
3.8.4 Accessing O b je c ts 50
3.8.5 Creating Husks 51
3.8.6 Persistent Slot-Dejinition Metaobject C la s s 52

3.9 Incremental Loading... 53
3.10 Incremental Saving and Dirty B i t s 54

3.10.1 The Problem ..56
3.10.2 An Ideal S o lu tion56
3.10.3 A Practical Solution...59
3.10.4 Another Practical S o lu tion61

3.11 Shared Structures...63
3.11.1 The Problem ..63
3.11.2 An Ideal S o lu tio n65
3.11.3 A Practical Solution...69

3.12 Virtual Object M em ory...70
3.12.1 High Water M a r k72
3.12.2 Least Recently Used Flushing P olicy......................................73
3.12.3 F easib ility ...74

3.13 Portability76

4. Persistent O b ject Store... ..79

4.1 Architecture of Object Base ..80
4.2 Q ueries..82

4.2.1 Query by Object I D ...83
4.2.2 Query by Object N a m e83
4.2.3 Query by Object K e y ..84

4.3 Index Management84
4.3.1 Preloading O b je c t s ...85
4.3.2 Elaborate Indexing87

viii

4.3.3 MetaStore’s C h o ic e ... 87
4.4 Transaction Management.. 88

4.4.1 Concurrency Control .. 88
4.4.2 Crash R e co v e ry ... 92

4.5 Version Control .. 94
4.5.1 Operations... 96

4.6 Object Base Garbage C o llection ... 97
4.7 Object C lustering... 98

4.7.1 Objects for Preloading .. 99
4.7.2 Objects for Lazy Loading... 101

4.8 Merging with Multiple M o d e ls .. 103
4.8.1 Copying Schem e... 103
4.8.2 Sharing S ch em e... 105
4.8.3 MetaStore's C h o ic e ...106

5. Im plem entation R esu lts ...107

5.1 Persistence and Metaobject P ro toco ls ..108
5.1.1 Merits ...108
5.1.2 Drawbacks...109
5.1.3 Abstraction M ism atch?.. I l l

5.1.4 Proposed Improvements to the Metaobject Protocol 112
5.2 PCL vs. Lucid C L O S .. 114

5.2.1 C reation ..115
5.2.2 Read A cce s s ... 115
5.2.3 Write A ccess... 117
5.2.4 Method Dispatch ..118
5.2.5 Method Specialization..118
5.2.6 R em arks..120

5.3 Cost of Objects ..121
5.3.1 C rea tion ..121
5.3.2 Read A cce s s ... 122
5.3.3 Write A ccess... 123
5.3.4 Functions vs. M e th o d s .. 124
5.3.5 R em arks..125

5.4 Cost of M eta .. 125
5.4.1 Cost of Metaobject C la ss ... 128

5.4.2 Cost of Method Specialization via :around Methods 130
5.4.3 Cost of Slot Level Persistence...132
5.4.4 Cost of MetaStore Kernel... 133
5.4.5 Cost of Shared Structures... 136
5.4.6 Cost of Virtual Object Memory ...138
5.4.7 R em arks..141

5.5 Cost of S tore .. 144
5.5.1 Saving Objects ...144

ix

5.5.2 Lazily Loading O b je c ts ...145
5.5.3 Object and Slot Clustering.. 147
5.5.4 Preloading Objects ...148
5.5.5 R em arks.. 150

6. Summing U p .. 153

6.1 Contributions ... 153
6.2 Future W o rk .. 162

References.. 169

x

Figures
1.1 Object manager as an application m o d u le .. 13

1.2 MetaStore architecture... 14

2.1 An array shared by two o b je c t s ... 28

3.1 Persistent objects in M etaStore... 35

3.2 A transient CLOS o b je c t ... 41

3.3 A persistable CLOS ob je ct .. 42

3.4 A husk o b je c t ... 42

3.5 An array shared by two o b je c t s ... 64

3.6 A persistable array shared by two persistable o b je c t s 66

3.7 Modification to array updates for sharing... 67

4.1 Architecture of an object b a se ... 81

Acknowledgment s
The long and winding road . . .

The Beatles

Indeed, it has been a long and winding road! I am just happy that so many

people have endured me long enough that I get to write the acknowledgements

section of a doctoral dissertation.

First, I thank my research advisor, Joe Zachary. This thesis would not have

come about without his patience, technical insight, and numerous yet thorough

readings. His concern and encouragement kept me on track during the times when

I was wandering around.

I also thank the other members of my thesis committee, Bob Kessler and Gary

Lindstrom, for their focused questions and discussions above and beyond the call

of duty. I will remember that one AMPS seminar that helped me realize there was

indeed a bigger problem with shared structures than I first thought. This triggered

a series of long discussions with them for months to come. Mark Swanson also gave

much of his time on those discussions. I wonder if they would still be interested in

“sharing11 anything.

Evans k, Sutherland gave me the opportunity to be persistent on persistence.

Special appreciations go to Don Garner and Thomas Jensen for their support and,

of course, to the CDRS “peonsv for their friendship and technical discussions. Craig

Steury deserves a special mention for those countless long “persistent11 afternoons.

Randall Krebs1 installing &TgX at E&S made my life much less miserable when it

counted the most.

I owe special thanks to Andreas Paepcke for his generous time over the phone on

many occasions to discuss his implementation of persistence and for sharing with

me some of his sample code and papers. I also owe special thanks to Gregor Kiczales

for the encouragement on using metaprogramming in implementing persistence, for

giving “phone support,” and for sending me a copy of the book The Art of the

Metaobject Protocol even before it was published.

My fellow graduate students not only have helped me with technical discussions

but more importantly have been friends. Thanks therefore go to Venkatesh Akella,

Gilad Bracha, and Rok Sosic. Keep in touch!

I also thank the staff, past and present, at the CS department front office for all

their help, especially Susan Jensen, Colleen Hoopes, and Stephanie Miya.

I am grateful for the information exchanges, verbal and electronic, with many

good people over the years. The following deserve a special mention: Don Batory,

Edwin Blake, Rick Cattell, Ken Kahn, Peter Lyngbaek (I am sad he is no longer

with us), David Maier, Eliot Moss, John Rosenberg, Michael Stonebraker, Jon L.

White, Peter Wisskirchen, and Jia-Huai You.

Let me thank my wife, Joyce, for her love, patience, nurture, and faith in me for

so long, and my children, Chris and Jamie, for their love and for not complaining

too much about the weekends without their dad. I will make it up guys— I promise!

Finally, I thank my parents and grandpa on the other side of the ocean for their

love and quiet yet enduring support. Grandma, I wish you were here to see this.

xiv

1

Introduction

Separate the transient from the permanent!
Brad Cox

This dissertation addresses the problem of object persistence in object-oriented

programming languages. MetaStore, a persistent object system, uses the metapro

gramming facilities of the metaobject protocol [23] to add persistence to the Com

mon Lisp Object System [8,21]. This approach leaves the semantics of CLOS

unchanged, requires only minimal syntactic changes to existing programs, and

needs no compiler or run-time support. In the resulting language, programmers can

selectively define both objects and slots to be persistent. MetaStore then handles

persistence at the metaobject level.

Object-oriented programming is a convenient mechanism for organizing complex

data and algorithms through encapsulation and inheritance. Applications such

as computer-aided design, software engineering, scientific databases, medical and

cartography systems, knowledge-based systems, multimedia systems, and office

information systems require many complex objects, and thus are beginning to adopt

object-oriented approaches.

There are two major issues to be solved in these so-called object-intensive appli

cations. First, objects must persist so that they can be used again later. File-based

or traditional database approaches are ill-suited for the many complex objects found

in these applications. Second, many of these applications also use vast amounts of

data, often exceeding a machine’s virtual memory. Thus, only a subset of all the

objects may be kept in virtual memory.

Object-oriented programming languages can cleanly and elegantly be extended

to support persistence at the granularity of objects and slots in such a way that not

all objects and slots must be loaded into virtual memory or saved to disk together

in batch mode.

MetaStore is a portable persistent object system designed to solve these prob

lems. It supports the persistence of passive data by providing a virtual object

memory. It tries to keep an appropriate number of objects in memory to maintain

system performance at an acceptable level, and allows programmers to tune perfor

mance by specifying object and slot clustering. MetaStore currently supports only

limited aspects of class evolution.

MetaStore addresses a range of issues in implementing persistence, including

object identity, addressing mechanisms, shared objects and structures, dirty bits,

queries, transaction management, version control, object base garbage collection,

and object clustering.

MetaStore has two major components: (i) the language extension portion that

relies on the metaobject protocol of CLOS, and (ii) the database management

portion that relies on a persistent object store, thus the name MetaStore. The focus

of our research is on the Meta portion, although some level of database management

support is required for persistence and is provided by Store.

Based on the initial implementation of MetaStore, we propose improvements to

the metaobject protocol of CLOS in both design and implementation. We also

propose changes in the design of MetaStore because performance measurements

suggest that the current design of MetaStore overburdens object creation and

accesses which are two of the most critical aspects of an object-oriented system.

2 1. Introduction

With the proposed changes, the CDRS CAD system, an object-intensive application

at Evans Sz Sutherland Computer Corp., will soon be ported to MetaStore.

In the rest of the chapter, section 1.1 describes the problem of object persistence

based on our experience with a real world, object-intensive application. Section

1.2 surveys related work. Section 1.3 provides an overview of MetaStore. Finally,

section 1.4 sketches a roadmap for the rest of the dissertation.

1.1 Object Persistence
There is no permanence.

The Epic of Gilgamesh

An object is persistent if it survives the termination of the process that created it.

Thus, the object must be saved in secondary storage when the process terminates

so that it can eventually be loaded and reused by another process at some later

time. Unless stated otherwise, an object is an instance of a class throughout this

dissertation. In MetaStore, persistence is supported on passive data with only a

limited treatment of class evolution.

1.1.1 CDRS: An Object-intensive Application

Conceptual Design and Rendering System [26] is a geometric CAD modeler

that is being used by designers in a dozen major automotive companies worldwide.

CDRS is large1 and sophisticated, and requires many complex geometric objects.

It is written mostly in Common Lisp [46] with its object-oriented extension, CLOS

[8,21]. The majority of data structures found in CDRS, especially the geometric

data that must be persistent, are objects. An object-intensive application like CDRS

is characterized as requiring:

• A large number of objects that may not all fit in virtual memory

1.1. Object Persistence 3

*It is about 400,000 lines of Common Lisp code and 150,000 lines of C [22] and C + + [27,48]
code. The disk image for CDRS is about 40 megabytes and the virtual image about 100 megabytes.

4 1. Introduction

• A wide variation in the sizes of objects

• Complex data structures within objects

• Rich relationships, both semantically and structurally, among objects.

Supporting object persistence in object-intensive applications is particularly hard

because of these characteristics. The problems we have had in CDRS with the

file-based, batch-oriented approach of object persistence motivated this research.

A persistent object system is essential for this kind of applications, and MetaStore is

designed to meet this need. The design of MetaStore is general enough to support all

object-intensive applications, although many design decisions are influenced by our

experience with CDRS. Generality, practicality, elegance, and performance were all

critical factors in the design decisions. We describe the problem of object persistence

in detail and sketch our solution in the next section.

1.1.2 Understanding The Problem

The file-based, batch-oriented approach for object persistence is ill-suited for

the many complex objects found in object-intensive applications. Our experience

with CDRS shows that this approach is not acceptable since it is very inefficient

in both time and space. With this approach, all the objects in a design session are

saved in a model file in batch mode at the end of a modeling session. When a new

session starts, all the objects in a model file are again loaded into virtual memory

before any object is modified. This approach requires a huge amount of virtual

memory, frequent and long garbage collections, and a long time to load and save

the models. For example, CDRS usually uses 500 megabytes of swap space and 64

megabytes of main memory (often expanding to 128 megabytes). An automotive

model built by one of CDRS corporate users takes about 24 minutes2 to save or

load. Users claim that anything more than three minutes of waiting is too much

in a production environment. Users are usually noncomputer professionals and

tend to save models frequently in fear of losing models due to reliability problems.

Improving software reliability3 and reducing user waiting time are critical for the

success of an object-intensive system like CDRS. Our approach will reduce user

waiting time by exploiting incremental saves and loads.

Traditional database approaches for object persistence are also ill-suited for the

many complex objects found in object-intensive applications. Relational systems

have successfully been used in many data-intensive [56] applications. They are well

suited for data of a uniform or simple record format, but have difficulty handling

objects of arbitrary sizes and complexities. They also suffer from what is known

as impedance mismatch [4,15] between the data manipulation language (DML) and

the host programming language of a database management system (DBMS). DMLs

and programming languages do not match well: the impedance mismatch results

mainly from the type mismatch between these two different kinds of languages.

Because the type system of a host language and that of a DML for a database

system are usually different, a programmer must take care of the type conversion

when storing data in the database and when retrieving them from the database to

operate on.

In contrast, a persistent object system supports object persistence using only

one language, an object-oriented language. Instead of interfacing with a DBMS,

a persistent object system usually interfaces with a persistent object store, which

supports a basic subset of the DBMS features. Thus, persistent object systems

2It now takes about eight minutes after some optimizations are done with a binary file format.
However, I am using the number before the optimizations were done since other numbers we will
see with the current implementation of MetaStore are not based on the similar optimizations.

3Each new release is usually accompanied by one of the developers for a month or so.

1.1. Object Persistence 5

can deal with complex objects without suffering from impedance mismatch and

without having to support sophisticated database system features. A persistent

object system is essential for a system like CDRS, and MetaStore is designed to

support such applications.

Designing a persistent object system requires addressing a range of issues, the

major ones being object identity, addressing mechanisms, shared objects and struc

tures, dirty bits, queries, transaction management, version control, object base

garbage collection, and object clustering. MetaStore focuses on these issues al

though other issues have to be handled at some level of sophistication since it is

meant to support a production system, CDRS.

1.2 Related Work
How many good ideas can there really be?

Luca Cardelli

Saving the results of computation for a later use has been an issue from the very

beginning of programming history. A comprehensive survey on this subject would

be so vast that this survey focuses only on the ones that have led to the idea of

MetaStore.

1.2.1 Interlisp

Interlisp [49] uses the simplest method of providing a language with a persistent

store by just copying the whole heap out to a file. The system then resumes by

loading the file. Simplicity is a virtue, but it carries a price. With this technique

for instance:

• The heap must always be loaded onto the same location, or else pointers held

on the heap become invalid. If the heap starts above the program, then any

editing of the program which changes its size will invalidate all of the pointers.

6 1. Introduction

In Lisp this is not a problem as program and data both sit in the heap, but this

means giving up the freedom provided by ordinary filing systems of running

one program against several files.

• It is impossible to store more data than can be loaded onto the heap at any one

time. The maximum database is limited by the machine’s physical or virtual

memory.

• Programs which make only a few small changes to a large body of stored data

pay a high I/O penalty because they must load the entire heap at the start

and save it again at the end of a session.

1.2.2 PS-Algol

PS-Algol [13] is S-Algol [36] extended with persistence by applying the principle

of orthogonal persistence. That is, any data type that can be handled internally

within the language can be made persistent so that it can be stored and transmitted

to other programs. It was done by an improvement in language implementation

techniques rather than by linguistic changes. Thus, the implementation depends

heavily on the language’s run-time support.

The persistent heap of PS-Algol is implemented by the Persistent Object Man

agement System (POMS) [11], which supports incremental loading and saving. The

run-time system maintains two separate heaps, one in RAM and the other on disk.

Thus, there are two types of addresses. Persistent IDs (PIDs) are represented as

negative integers and local addresses as positive integers. A dereference instruction

can therefore trap all negative addresses. The POMS then fetches the object from

disk, loads it onto the heap and overwrites the negative address that had been

dereferenced with the new local address. When a program has finished, the run-time

system copies objects from the local heap in RAM to the persistent heap in disk.

1.2. Related Work 7

As each object is copied from RAM to disk, all local addresses are converted to

PIDs.

POMS uses the concept of root object. When a program is run against the

database, a distinguished object is copied from the database to the local heap.

This root object contains pointers to other items in the database.

Writh this approach, persistence is supported in the base language implemen

tation level, where the persistence implementor can have flexible hooks to the

internals of the base language implementation. The implementation in this ap

proach wouldn’t be portable though. Persistence can also be supported at the

application level or at the metalevel. These different approaches which include the

one MetaStore uses are described in section 2.4.

1.2.3 Mneme

The Store portion of MetaStore is most closely related to Mneme4 [37]. Mneme

is a persistent object store that can be used to support distributed persistent

programming language implementations. It gives the illusion of a large, shared

heap of objects, directly accessible from the programming language used to build

the applications.

Mneme stores objects in a simple and general format, preserving object identity

and object interrelationships. Given an object ID, each access to an object requires

looking up the ID in the resident object table.

Mneme supports the minimal object semantics— every object has an ID, the

object can contain IDs to describe its pointer relationships to other objects, and

the object can contain any non-ID data desired.

8 1. Introduction

4Mneme is the Greek word for memory; it is pronounced Nee-mee.

Mneme currently is being used to implement Persistent Smalltalk and Persistent

Modula-3, which pose different problems. They are at opposite ends of the inter

preted versus compiled and run-time versus compile-time type checking spectra.

Although Store is a necessary part of MetaStore, it was not the main focus of

our research. If Mneme were available in Common Lisp, we could have used it in

MetaStore by introducing the model file concept, which models a real world user

“object,” as an abstraction on top of Mneme.

1.2.4 PCLOS

Persistent Common Lisp Object System [38,39,40] is the closest relative of the

Meta portion of MetaStore. PCLOS uses the metaobject protocol [23] of CLOS to

add persistence to CLOS. It interfaces with a database management system through

the virtual database layer for the database support.

PCLOS uses husk objects, in-memory data structures representing the objects in

the database, for the purpose of message passing and in-memory referencing. The

smallest grain size of persistence in PCLOS is an object, whereas in MetaStore it

is a composite slot5.

PCLOS has a very general system model with the following three layers:

• Language objects implementation

• Virtual database— conceptual interface between the other two

• Database management system

The general problem of impedance mismatch is bad enough with DBMS ap

proaches. Implementing the system model of PCLOS requires dealing with one

more mapping, thus requiring two overall:

5The notion of composite slot is introduced in section 3.5.

1.2. Related Work 9

1. Objects and classes in the language must be described in terms of operations

and concepts of the virtual database.

10 1. Introduction

2. The virtual database operations and concepts must then be expressed in terms

of various specific database managers.

In MetaStore we use a persistent object store, thus eliminating impedance mismatch

altogether.

1.3 MetaStore

MetaStore is a persistent object system with a virtual object memory. This

section gives an overview of MetaStore by describing our research goals, language

design aspects via metaprogramming, the persistent object store used in MetaStore,

and the architecture of MetaStore.

1.3.1 Research Goals

The main research goals of MetaStore are:

• Support object persistence so that it is transparent to application programs

while maintaining system performance at an acceptable level.

• Design a general purpose persistent object store to be used by object-oriented

programming languages that support object persistence.

• Design a portable persistent object system by extending an object-oriented

language. This is done by using the metaprogramming facilities of a language

system through which the persistent object store is used. Objects in this

system will be incrementally loaded and saved. This system will be portable

since it will not rely on any compiler or run-time support.

• Preserve the semantics and minimize syntactic changes of the language chosen

while supporting object persistence.

• Support a virtual object memory to monitor the amount of data in virtual

memory and reduce it by flushing out some objects if there are too many

objects.

1.3.2 Language Extension via Metaprogramming

This research was motivated by the problem of object persistence in CDRS. In

solving this problem by supporting object persistence in a language system, the

metaprogramming facilities of CLOS are used because:

• CDRS uses a commercial CLOS implementation with no access to the imple

mentation source code.

• CLOS supports metaobject protocols.

• CLOS can be extended via its metaobject protocols to support object persis

tence.

• We want to evaluate the merits and drawbacks of the metaprogramming ideas

in programming language design.

Thus, the metaobject protocol of CLOS handles all the persistence related issues

that interact with the run-time system side of CLOS.

The smallest granularity of persistence in PCLOS [40] is an object, whereas in

MetaStore it is a composite slot. Based on our experience with CDRS, on the

average about 80% of an object is occupied by composite slot values, and it seems

important to control persistence at this grain size. This grain size is particularly

important for the virtual object memory idea to work. Supporting the grain size

at the slot level is made possible by the use of the metaobject protocol.

1.3. MetaStore 11

1.3.3 Persistent Object Store

Supporting persistence requires some degree of database management support.

A general purpose, language independent, persistent object store is designed and

implemented to provide the necessary subset of database management features

instead of using a DBMS for the following reasons:

• Unless an object-oriented DBMS is available, impedance mismatch would be

a major problem.

• Even if it is available, we have to totally depend on the features and efficiency

of the DBMS.

• Many object-intensive applications, e.g., CDRS, do not need all the sophisti

cated features of a DBMS.

• Being able to tune the module/system that provides the database management

support is extremely important for an application like CDRS. Thus, it is

essential to have our own implementation. There is no Common Lisp based

object-oriented DBMS that can support CDRS with the required efficiency.

The persistent object store is designed to support object-intensive applications

well. Moss [37], for example, states that:

• One of its goals was to be able to retrieve 10,000 “useful,” “typical size” objects

per second from external storage into memory.

• “Typical size” for languages such as CLU [28,29], Smalltalk-80 [16], and Trellis

[42] appears to be in the range of 30 to 50 bytes.

Based on our experience with CDRS, however, the objects range anywhere from

a few hundred bytes to 150,000 bytes. The decision to support the smallest per

sistence granularity at the slot level and to support a virtual object memory was

12 1. Introduction

1.4. Roadmap 13

Application

Object Manager

CLOS

Common Lisp

Database

Figure 1.1. Object manager as an application module

influenced heavily by this characteristic of CDRS. We believe that most “design”

applications share this characteristic.

1.3.4 MetaStore Architecture

If persistence is supported as a module in the application layer of a persistent

object system, the system architecture would look like Figure 1.1. With this archi

tecture the object manager handles the object management as well as persistence

of the objects. Pre-MetaStore CDRS uses this architecture.

With persistence added to the metalevel of CLOS, the overall architecture of

MetaStore looks like Figure 1.2. In Figure 1.2, Store is the persistent object store,

and Meta is the language extension portion done via the raetaprogramming facilities.

1.4 Roadmap

The remainder of this dissertation consists of five chapters.

In Chapter 2, several preliminary subjects that would help the readers under

stand the rest of the dissertation are discussed. They are the fundamental concepts

of the object-oriented programming paradigm, a persistent object model, use of

14 1. Introduction

Application

Meta

Store

CLOS

Common Lisp

Database

Figure 1.2. MetaStore architecture

the metaprogramming ideas in programming language design, and several different

schemes of adding object persistence to a language system.

Chapter 3 describes the Meta part of MetaStore. That is, it describes how the

metaobject protocol of CLOS is used to extend an object-oriented language, CLOS,

to support object persistence. After an overview of Meta by describing the life cycle

of a persistent object, various major issues are described in turn.

Chapter 4 describes the Store part of MetaStore. It describes a general purpose,

language independent persistent object store that provides a necessary subset of

DBMS features for object-oriented languages that support object persistence.

Chapter 5 reports the results of an implementation. They include our experience

of using the metaobject protocol of CLOS as a language design tool, and various

performance measurements on Meta and Store portions of MetaStore along with

analyses of the measurements.

Finally, Chapter 6 sums up the dissertation by summarizing our contributions

and sketching future work.

2
Preliminaries

Now, these are the foundations
II Chronicles 3: 3

In this chapter, several preliminary subjects that will help the reader understand

the rest of the dissertation are discussed. First, the fundamental concepts of

the object-oriented programming paradigm are summarized. The main purpose

of this summary is to illustrate how these fundamental concepts help in cleanly

and elegantly extending an object-oriented language with persistence. Second, an

object-oriented database system model [3] is referenced, and we discuss how close

MetaStore is to this model. Third, metaprogramming as a programming language

design tool is discussed. Finally, three different possible persistence schemes are

described.

2.1 Object-Oriented Programming
My cat is object-oriented

Roger King

Object-oriented programming is a programming methodology that encourages

modular design and software reuse. There are many differences among existing

object-oriented programming languages in terms of what is supported in the lan

guage. Describing the differences is beyond the scope of this section. Therefore,

we describe the concepts that are considered fundamental in an object-oriented

language. They are encapsulation, dynamic binding, and inheritance. While

concentrating on these fundamental concepts, we also describe why some object-

oriented languages make extension for persistence more elegant and natural than

other languages allow.

2.1.1 Encapsulation

Object-oriented programming languages support data abstraction by preventing

an object from being manipulated except via its defined external operations. A class

or more generally an abstract data type (ADT) has two components: specification

and implementation. The implementation of a class includes the details of how

it represents the data it contains, and which algorithms it uses for the actions it

supports. Client programs then interact with class instances only by means of a

well defined set of operations, i.e., the class’ specification. The idea is to hide the

implementation details of a class from the client programs. In object-oriented pro

gramming languages such as C + + [27,48] and CLOS [8,21], the separation between

specification and implementation is enforced by the language, thus improving the

modularity and reusability of the software.

An object can be viewed as an encapsulation. That is, an object has its internal

state, its implementation, and its public interface. How an object implements its

actions, and how its internal data are arranged, are encapsulated inside a procedural

shell that mediates all public accesses to the object. Typically, the internal state

is represented by the values of the slots1 making up the object, the actions are

implemented by methods, and the public interface is a subset of generic functions

defined for a given class.2

xW e borrow the terminology from CLOS. They include slots, methods, generic functions, etc.

2There are, in general, many generic functions defined for a class: some for the internal use
and others for the public interface.

16 2. Preliminaries

When an object-oriented language is defined and implemented via the use of

metaobjects as is the case with CLOS [23], metalevel encapsulation is also possible

in the form of metaobjects. Given a class, for example, all the instances, methods,

generic functions, and the class definition itself of the class can be encapsulated in

the metaobject of the class.

Given a class, because all the class related information that needs to be persistent

is encapsulated in one place, namely in the metaobject of the class, it is easier

to support object persistence in object-oriented languages than it is with non

object-oriented languages. The metaobject of a class is the only place to look to

find all the information that needs to be saved in object-oriented languages that

support metaobject protocols, whereas application programs must maintain all the

information that needs to be persistent with a non-object-oriented language. There

are other advantages. For example, there might be classes that are meant to be

persistent while others are not. This can easily be supported in an object-oriented

language like CLOS via the use of metaobjects as we will see in section 2.1.3.

Controlling the grain size of persistence at the slot level can also easily be done

with object-oriented languages that support metaobject protocols.

2.1.2 Dynamic Binding

Object-oriented languages support dynamic, or late, binding of method names

to their implementations at run-time.3

Suppose we have a list of arbitrary objects: 2D points, 3D points, lines, circles,

curves, raster images, students, etc. Given a list of these heterogeneous objects,

suppose we want to display each object in the list.

2.1. Object-Oriented Programming 17

3In CLOS, generic functions are bound to implementations of methods.

In a non-object-oriented language like Pascal [18], one routine, say display,

would handle all the objects in the list.4 display would be implemented using a

case statement on the type of objects. Depending on the type of an object, it

would execute different branches of the case statement. This one routine, thus,

performs two functions: dispatching on types and displaying objects. Given this

implementation of display and a list of objects, each object can easily be displayed.

Assuming that surfaces are not included in the initial implementation of display,

suppose we now want to be able to display surfaces as well using the same mech

anism. We would have to modify the existing display routine by adding another

branch that handles surfaces. When the routine, display, is implemented by the

user, this is manageable. However, if display was one of the routines that was

provided by a module in a library to which we have no write access, then we would

have to handle surfaces differently.5

In an object-oriented language like CLOS, each object type, i.e., class, would

define its own method, display, to display that particular type of object only.

Thus, the displaying part is handled by each class. The dispatching part, however,

is handled by the language system itself. When an object is given as an argument

to display, the language system at run-time finds the method that was specifically

defined for the class the given object is an instance of, and executes the method

with the given object as an argument. Therefore, the binding of the name display

to an appropriate method implementation happens at run-time, thus the name

4Also in Pascal, the list has to be a homogeneous list of variant records.

5An alternative solution exists as well. We could implement one display routine for each type
such as d is p la y -2 D -p o in t , d is p la y -3 d -p o in t , d i s p la y -l in e , etc. This alternative puts the
similar burden to the user of the routines. That is, given a list of objects to display, the user
routine would have to check the type of each object in the list and call the right routine depending
on the type. This seems even worse than the other solution because there would be in general
many users of this kind of routines.

18 2. Preliminaries

dynamic or late binding. With this extra support by the language system, all the

difficulties that we mentioned above with other possible solutions disappear.

Along with inheritance, which we will describe in the next section, dynamic

binding helps support object persistence as well. One of the routines we would need

in supporting object persistence is save-object. Without the help of inheritance,

each class would define a method with this name. Then, the module handling

persistence would use these methods. However, this is not the best we could do

with object-oriented languages because inheritance makes it even simpler, which

we will now see in the next section.

2.1.3 Inheritance

Inheritance allows us to reuse and share the behavior of a class in the definition of

new classes. Subclasses of a class inherit the operations and slots of their superclass

and may add new operations and new slots.

For the purpose of supporting persistence, let us suppose that we defined a class

named persistent-class. There would then be a method named save-object

among others defined for this class. Each user class that needs to be persistent,

for example 2D-point, can now inherit persistent-class so that its instances

can enjoy the persistent behavior with the help of persistent-class. We call a

user class that inherits persistent-class a persistable class. An instance of a

persistable class is a persistable object, which becomes persistent when saved. A

persistable slot is a slot declared persistable in a persistable class. In the absence

of its own method named save-object, if we send the message save-object to

one of the instances of the 2D-point class, the one defined for persistent-class

is executed because the superclass persistent-class is inherited by a subclass

2D-point.

2.1. Object-Oriented Programming 19

Without inheritance in the previous section, we said that we would have to define

a method named save-object for each class whose instances need to be persistent.

Writh inheritance, all each user class has to do is to inherit persistent-class

unless the user class has a reason to modify the behavior of the default method

defined for save-object by persistent-class. W7ith the help of the metaobject

protocol in CLOS, the method save-object or any other persistence handling

method in general does not need to understand the semantics of the class and its

contents being saved. Thus, supporting persistence via the use of inheritance is

quite adequate. MetaStore supports object persistence via inheritance as we will

see in Chapter 3.

This section presents only a flavor of what inheritance is and how it helps in

supporting object persistence. There is much more to inheritance than what is

described in this section. Rather than describing it in detail, which is beyond

the scope of this section, we refer the readers to [21], [27], [9], and [14] for more

detailed coverage of inheritance. Jigsaw [9] and Cook [14] are particularly good for

the formal semantics of inheritance.

2.2 Persistent Object Model

Indeed, there are at least 64 different object models!
Carl Hewitt

There are many object-oriented programming languages in use today. Different

object-oriented languages support different sets of language features and there

seems to be no consensus as to what must be included in a language for it to be

considered object-oriented. The situation with persistent object systems is similar.

For an object-oriented programming system to be considered a persistent object

system, it must support some database system related features, and there seems to

be no consensus here, either.

20 2. Preliminaries

The authors in [3] define a model for object-oriented database systems. It de

scribes the main features and characteristics that a system must have to qualify as

an object-oriented database system. These characteristics are separated into three

categories: mandatory, optional, and open.

Although persistent object systems have slightly different requirements than

object-oriented database systems, they are in general quite similar. Persistent ob

ject systems, not being a database management system, require fewer of the features

that are related to the database management aspects. MetaStore is designed with

the model defined in [3] as a guide. In this section, the aspects in which MetaStore

deviates substantially from the model defined in [3] are described. Only mandatory

and optional features are considered since the open features are considered beyond

the scope of the initial design of MetaStore.

2.2.1 Mandatory Features

As mandatory features for object-oriented database systems, the authors in [3]

list complex objects, object identity, encapsulation, types or classes, inheritance,

overriding combined with late binding, extensibility, and computational complete

ness on the language side; persistence, secondary storage management, concurrency,

crash recovery, and ad hoc query facility on the database management side.

The things listed on the language side are already supported by most object-

oriented languages in which MetaStore would be implemented, including CLOS in

which the initial implementation of MetaStore is done.

Among the things listed on the database management side, secondary storage

management is a classical feature of database management systems. It is usually

supported through a coordinated set of mechanisms. For object-oriented database

systems, these include index management, data clustering, data buffering, access

path selection, and query optimization. In MetaStore, only a simple form of index

2.2. Persistent Object Model 21

management, data clustering, and access path selection are supported; data buffer

ing and query optimization are not treated. Supporting data buffering is beyond

the scope of this dissertation; the one provided by the operating system would be

good enough for our purposes in MetaStore. Supporting query optimization is not

necessary because all the queries we support in MetaStore are simple, e.g., query

by object identifier, query by name, and query by key.

2.2.2 Optional Features

Some features that improve the system, but that are not mandatory to make it

an object-oriented database system are classified as optional. Some of these are of

an object-oriented language nature and others are simply database system related.

Most of these are targeted at serving “new5' kinds of applications such as CAD and

office automation, and are more application oriented than technology oriented.

The authors in [3] list multiple inheritance, type checking, and type inferencing

on the language side; distribution, design transaction, and versions on the database

management side.

Multiple inheritance is supported by CLOS. MetaStore supports transactions

in design environments and a simple form of version control. Distribution, type

checking, and type inferencing are not included in the design of MetaStore because

they are beyond the scope of this dissertation.

2.3 Metaprogramming
Reflection’s broader implications:
deepest hopes and darkest fears.

Gregor Kiczales

This section briefly describes what metaprogramming is, gives an example of a

language system that supports it, and explains how one, the metaobject protocol

of CLOS, is used in MetaStore.

22 2. Preliminaries

Some computational systems are designed to have two levels: the base level

(computational level) and the metalevel. Programming at the metalevel is called

metaprogramming. Reflection is the fundamental concept that makes the metapro

gramming ideas possible, and is defined to be:

an entity’s integral ability to represent, operate on, and otherwise deal
with itself in the same way that it represents, operates on, and deals with
its primary subject matter [2].

A detailed description of reflection and reflective techniques is beyond the scope

of this section. Thus, the reader is directed to [31] for a comprehensive treatment

of reflective techniques, and to [45] for an elaborate description of how reflection

is used in describing the semantics of a dialect of Lisp called 3-Lisp [45]. The

workshop report [2] describes the recent research activities on the subject.

One popular design of an object-oriented programming system that supports

metaprogramming is CLOS.6 Its metaprogramming facilities, the metaobject pro

tocol, is of immediate interest to MetaStore. The metaobject protocol of CLOS is

used in MetaStore to extend CLOS with object persistence.

The authors in [23] describe how CLOS was designed and implemented with

reflective and object-oriented techniques as the underlying technologies to support

metaprogramming. It is stated in [23][pg. 1] that:

This book is about a new approach to programming language design, in
which these two demands of elegance and efficiency are viewed as compat
ible, not conflicting. Our goal is the development of languages that are
as clean as the purest theoretical designs, but that make no compromises
on performance or control over implementation. . . . The way in which
we achieved elegance and efficiency jointly is to base language design on
metaobject protocols. Metaobject protocols are interfaces to the language
that give users the ability to incrementally modify the language’s behavior
and implementation, as well as the ability to write programs within the
language. . . . The metaobject protocol approach, in contrast, is based on
the idea that one can and should “open languages up,” allowing users to
adjust the design and implementation to suit their needs.

2.3. Metaprogramming 23

6Many industrial strength implementations of this design are also available.

In CLOS, the language implementation itself is structured as an object-oriented

program, which includes an implementation of reflection. This allows users to

exploit the power of object-oriented programming techniques to make the language

implementation adjustable and flexible, using standard techniques of subclassing

and specialization in object-oriented programming.

In the design of CLOS, the basic elements of the programming language— classes,

methods, and generic functions— are first made accessible as objects. Because

these objects represent fragments of a program, they are given the special name

metaobject. Individual decisions about the behavior of the language are encoded in

a protocol operating on these metaobjects— a metaobject protocol. For each kind of

metaobject, a default class is created, which delineates the behavior of the default

language in the form of methods in the protocol.

In the CLOS metaobject protocol, the rules used to determine the implementa

tion of instances are controlled by a small number of generic functions. This makes

it possible to change those rules by defining a new kind of class, as a subclass of

the default class, and by giving it specialized methods on those generic functions.

By doing this, the user is making an incremental adjustment in the language. Most

aspects of both the language’s behavior and implementation remain unchanged,

with just the instance representation strategy being adjusted.

Using the metaobject protocol, MetaStore incrementally adds object persistence

to CLOS. There are structural adjustments and behavioral adjustments. In struc

ture, each persistable class is augmented with extra slots that MetaStore uses.

This is done by using the inheritance mechanism at the metalevel. Behavioral

adjustments are made by specializing generic functions defined in the metaobject

protocol. As long as the protocol is complete enough to do the things that need

be done to add persistence, MetaStore will not have to know anything about

the internals of how CLOS is implemented. When a deficiency is found in the

24 2. Preliminaries

protocol, it can be extended to handle the deficiency. In Chapter 6 we propose

some improvements to the metaobject protocol of CLOS based on our experience

with MetaStore.

2.4 Persistence Schemes
I offer thee three things: choose one of them

I Chronicles 21: 10

In this section, we discuss at what level in an object-oriented language system

object persistence can be best supported. It can conceptually be supported at one

of several different levels of such a language system:

• Base level persistence: Persistence is supported at the base language imple

mentation level with a full compiler and run-time support of a language system.

This is the same level at which, for example, garbage collection is supported.

Persistence in PS-Algol [13] is implemented at this level.

• Application level persistence: Persistence is supported at the application pro

gramming level as an application module, say an object manager, designed to

support the persistence of user objects. Pre-MetaStore CDRS is implemented

in this way.

• Metalevel persistence: Persistence is supported at the metalevel via the metaob

ject protocol of a language system. At this level, the persistence implementor

can support object persistence without any help from either user programs or

the language compiler and run-time support system. This is possible because

the metalevel interface provides enough hooks to the underlying language sys

tem internals for user programs. Some limitations of this scheme, encountered

in implementing MetaStore is detailed in section 5.1.

Let us examine different issues involved in supporting persistence in each of these

approaches.

2.4. Persistence Schemes 25

26 2. Preliminaries

The question of addressing mechanisms is at the basis of all implementations

of persistent object systems. In persistent object systems we store objects while

preserving referential structure. Different addressing mechanisms are available

depending on which scheme we use.

In the base level persistence scheme, we can adopt an addressing mechanism

particularly suited for persistent data with full freedom. In PS-Algol [13], for

example, disk addresses were represented as negative numbers and virtual addresses

as positive numbers by dividing address space in two halves. Segmented virtual

memory used by the Smalltalk system [19] is another example of addressing done

at this level.

Both metalevel and application level schemes are similar in the degree of access

they have, which is essentially none, to the base language implementation as far

as addressing mechanism is concerned. This is because addressing mechanism is

not a property of object-orientedness but of the base language implementation

techniques. Therefore, we have to choose mechanisms appropriate for these levels.

Associative persistent ID addressing and pointer swizzling are two mechanisms

that are available at these levels, and they are described in detail in section 3.7. Of

course, these mechanisms can also be used at the base level.

2.4.2 Incremental Saves

Supporting incremental saves of objects requires keeping track of which objects,

structured data, and atomic data have been modified since the last incremental

save. By adding a dirty bit to each data item, the persistence implementor can

intercept all the data mutating operators in the language to update the dirty bit.

Because the values of slots in an object can be changed without going through the

2.4.1 Addressing Mechanisms

public interface of an object, the problem of keeping track of dirty bits is hard,

especially with CLOS because of the flexibility available to user programs.

In the base level persistence scheme, it is easy to maintain the dirty bits be

cause the persistence implementor has easy access to the internals of the language

implementation. The persistence implementor also has unlimited access to all the

data mutating operators such as (setf aref) for arrays and rplaca for lists in

Common Lisp, for example.

In the metalevel persistence scheme, it is easy to add dirty bits to objects and

intercept the object mutating operators, e.g., (setf slot-value), but there is

no way to do this for data that are not objects. For instance, adding a dirty

bit to an array and intercepting the array mutating operator, e.g., (setf aref),

is impossible to do using only the interface provided by the metaobject protocol.

The persistence implementor must resort to a mechanism that an application level

persistence implementor can use, as described next.

In the application level persistence scheme, the persistence implementor has no

access whatsoever to the internals of the language implementation. The implemen

tor has to maintain the dirty bits in his or her own data structures although they

can be maintained in slots in the case of objects, and the implementor must rely

on user programs telling him or her what is being modified.

Therefore, the base level persistence scheme would be the best one to use for

dealing with incremental saves of modified objects. If metaobject protocols are

available for all persistable data types supported in a language, then the metalevel

scheme would be as good as the base level scheme.

2.4.3 Shared Structures

Preserving language semantics on structure sharing in the context of persistence

is a difficult problem. By structure, we mean structured data other than objects.

2.4. Persistence Schemes 27

Thus, arrays and lists are examples of structures. Suppose the array a l, a slot

of the object 01 in Figure 2.1 is ready to be saved, and also suppose that al has

another array a2 as one of its elements. Further suppose that a slot of another

object 02 also has a2 as its value through a third array a3. Thus, a2 is shared by

01 and 02.

This sort of sharing is perfectly legal in Common Lisp. Assuming only objects

have dirty bits,7 and also assuming both 01 and 02 are dirty, if both 01 and 02

are saved, two copies of a2 will be saved: once by 01 and another by 02. When 01

and 02 are both loaded at some later time, b of 01 and c of 02 will have their own

copies of the original array a2, say a 2 -l and a2-2.

In the base level persistence scheme, the persistence implementor has several

options. One would be keeping back pointers from an array to each of its references.

7Unless we have access to the base language implementation level, there is no easy way to add
a dirty bit to a data item unless it is an object.

28 2. Preliminaries

01: dirtyp t
a 3.4

b
c 50

al:

02: dirtyp t
a 4.6

b 45
c

a3:

Figure 2.1. An array shared by two objects

Another would be keeping one level of indirection on each array. Still another would

be representing each array as an object. Whichever the implementor chooses, he or

she has the full freedom as to how arrays are represented and how they are accessed

in the context of persistence.

Both the metalevel and application level schemes have no access to the internals

of the nonobject, structured data of a language system. Therefore, they must rely

on their own mechanism to deal with sharing of these structures. One possible

solution at these levels is to keep back pointers in the form of a hash table with

the virtual address of a referenced structure as the key and the things that make

references to the structure as the value of each hash entry. This algorithm is

described in detail in section 3.11.2.

Therefore, structure sharing in the context of persistence can best be supported

in the base level persistence scheme. If metaobject protocols are available for all

persistable data types supported in a language, then the metalevel scheme would

be as good as the base level scheme.

2.4.4 Orthogonal Persistence

Orthogonal persistence requires supporting persistence of any data type that is

supported in a language. Based on the analyses done in the previous subsections

dealing with incremental saves and shared structures, therefore, it is obvious that

the base level persistence scheme would be the best one to use, and it would be

difficult to support orthogonal persistence in the other two schemes. If metaobject

protocols are available for all persistable data types supported in a language, then

the metalevel scheme would be as good as the base level scheme.

2.4. Persistence Schemes 29

30 2. Preliminaries

The issue here is separating the transient from the persistent. In a typical

object-intensive application, the majority8 of data items that are created, including

objects, are meant to be transient, i.e., are never meant to be saved. This is so

partly because some are meant to be transient for their entire life cycle, and partly

because others, whether contained in an object or not, evolve many times before

they finally reach a savable state. Because one of the main concerns of persistent

languages is performance, treating all data being created as persistable would not

be very desirable. Even for a persistable object, it is not desirable to save the

object on every update because it would in general be updated many times before

it reaches a savable state.

In the base level persistence scheme, given an array for example, it would be

difficult to tell if it is meant by user programs to be transient or persistent. That

is, the base level is too low a level to easily distinguish what is meant to be transient

and what is meant to be persistent. If the language is modified in such a way that

user programs are required to tell which arrays are transient and which arrays are

persistent, for example, it would be too big a change in the language although it

would solve the problem of selective persistence. An alternative at the base level

would be to support two different kinds of arrays: transient arrays and persistent

arrays, which again requires changes in the language syntax and semantics.

Separating the transient from the persistent at the object level seems appropri

ate. Then, any data reachable from a persistable object via persistable slots can be

treated persistable.9 Distinguishing persistable objects from transient objects can

8Our educated guess is over 90% . Generational garbage collectors, e.g., [53], are particularly
effective because of this life pattern of program data.

9Therefore, a persistable object only reachable from a transient slot will in effect not be
persistent. This situation can easily be fixed by declaring the slot to be persistable.

2.4.5 Selective Persistence

easily be done by using the inheritance mechanism of an object-oriented system.

That is, a persistent root class can be defined to handle persistence, and any class

that is intended to be persistable inherits the persistent root class. Therefore, both

the metalevel and the application level would equally be better than the base level

in supporting this feature.

2.4.6 Granularity of Persistence

In the base level persistence scheme, the grain size of persistence may be too

small because each datum of data types supported by the language would be treated

as a separate unit during a save or a load operation.

Because an object seems to be a good choice for the grain size, the application

level persistence scheme would be a good choice. As with the selective persistence

in section 2.4.5, the inheritance mechanism would be used.

If supporting the grain size at the slot level as well as the object level is desired (as

it is in MetaStore), then the metalevel persistence scheme would be the best fit. The

metaobject protocol of CLOS supports the interface to the slot level metaobjects,

thus making it possible to support the grain size at that level.

2.4.7 Portability

Because the compiler and the run-time support system in the base level persis

tence scheme is likely to be customized to meet the needs of a persistence imple

mentor, it would not be portable across different implementations of a language.

The metaobject protocol of an object-oriented language is designed to be portable,

thus persistence implemented using the protocol would certainly be portable.

The persistence implemented via the application level persistence scheme would

also be portable.

2.4. Persistence Schemes 31

32 2. Preliminaries

The metalevel persistence scheme is particularly good at supporting persistence

of objects. It is quite natural to support selective persistence via inheritance

mechanisms. It is easy to support slot level persistence by augmenting the slot

accessing mechanisms. Because metaobject protocols are portable, so is the persis

tence implemented via them.

As for addressing mechanisms, a pointer swizzling mechanism, which is one of

the most popular ways, can easily and naturally be used by the metalevel scheme.

Orthogonal persistence is hard to support without the support of the base

language implementation level. If the base language itself is implemented with

reflective and object-oriented techniques, thus supporting the metaobject protocols

at that level, then orthogonal persistence would easily be supported at the meta

level. With this design, each data type would be implemented as an object and

some selective aspects of the implementation internals would be accessible via the

metaobject protocols. However, the current metaobject protocol of CLOS does not

go this far: only objects are implemented this way, thus a limited access to the

internals by user programs via the metaobject protocol. In Chapter 6 we propose

some improvements to the metaobject protocol of CLOS based on our experience

with MetaStore.

2.4.8 Summary

3 Language Extension via
Metaprogramming

Language design is reminiscent of Ptolemaic astronomy
- for ever in need of further corrections.

Jean-Yves Girard

This chapter describes the M eta portion of MetaStore. That is, it describes

how the metaprogramming facilities, the metaobject protocol, of an object-oriented

language system, CLOS, is used to extend the language with object persistence.

As we saw in section 2.4, object persistence can be implemented at one of several

different levels of a language system. In MetaStore it is done at the metalevel.

Although the design of MetaStore can be implemented in any object-oriented lan

guage that supports metaprogramming facilities, CLOS was chosen in this research

as an implementation language for the following reasons. CDRS, which motivated

this research, is written in CLOS. CLOS supports a metaobject protocol, and can

be extended with object persistence via the metaobject protocol.

After an overview of M eta, various major issues are described in turn.

3.1 Overview of M e t a

The overview of M eta is given by describing the life cycle of a persistent object.

At each stage in the life cycle, we describe what kinds of language extensions are

necessary and how they are achieved via the help of the metaobject protocol of

CLOS. When the protocol is not expressive enough to handle any issue, this is also

described.

We distinguish between persistable and persistent as follows. A persistable object

is an instance of a persistable class, where a persistable class is a subclass of the

persistent class p e r s is t e n t -r o o t -c la s s . Thus, persistence in MetaStore is via

inheritance. A persistable object becomes a persistent object when it is eventually

saved to the object base. A persistable slot is a slot declared persistable in a

persistable class. The value of a persistable slot also becomes persistent when

saved.

Figure 3.1 contains two persistable objects, 01 and 02. 01 has five slots: o id ,

a, b, c, and d. o id is added by MetaStore and the other four are from the user

defined class of which 01 is an instance. 02 has four slots: o id , e, f , and g. o id is

again added by MetaStore and the other three are from 02"s user defined class.

A persistable object, just as any other object, is created by a method call such

as m ake-instance in CLOS. In MetaStore, when a persistable object is created, it

is assigned a unique object identifier (OID) (section 3.3). The OID of the object

01 in Figure 3.1 is 22. A unique OID is necessary to map virtual addresses to

persistent IDs as objects are saved to the object base, and to map from persistent

IDs to virtual addresses as objects are loaded from the object base (section 3.7).

Upon creation of a persistable object, an intermediary data structure called a

phole1 (section 3.5) is added between a persistable object and each of its persistable

composite slot values (section 3.5). In Figure 3.1, slots b and d of the object 01

and f and g of 02 are composite slots, and each has its own phole. A composite

slot is a slot whose value is not of a primitive type.

The use of pholes in MetaStore is a novel idea, which makes the following

possible:

34 3. Language Extension via Metaprogramming

• Maintaining dirty bits for incremental saves

1 Phole stands for a persistent hole; it is pronounced “Foie.”

3.1. Overview of Meta 35

Memory Disk

01 :

02 :

oid 22
a 3.4

b
c 50

d

oid 25
e 4.8

f

g

array-10

pholel

phole2

(list-20)

(list-21)

phole3

array-10

list-20)

*{list-21)

Figure 3.1. Persistent objects in MetaStore

• Supporting persistence granularity at the slot level

• Lazy loading of composite slot values

• Supporting a virtual object memory

• Handling shared structures

A phole contains the identifier of a slot and provides one level of indirection, which

is necessary to support the features listed above.

Once a new persistable object is created, it can be repeatedly accessed, read

or written. For now, a read access can be viewed as being much like a read on a

transient object. A write access is more interesting. The slot accessed for a write

is marked dirty in the phole associated with the slot if it is a persistable composite

slot of a persistable object. Otherwise, the object itself is marked dirty. Thus, a

two level dirty bit scheme is adopted in MetaStore (section 3.10).

At some later time, a repeatedly accessed persistable object is saved if dirty

when there is a request for a save, a new checkpoint (section 4.4.2), or a new version

(section 4.5), thus becoming persistent. Even after an object is saved, the copy in

virtual memory remains until the process that created the object terminates or the

object is deleted upon a user’s request. When a persistent object is deleted, both

copies— the one in virtual memory and the one in the object base— are deleted.

When an object is saved and the process that created it terminates, the life of

the object is not terminated, but goes into a dormant state.2 When another process

similar to the one that initially created the object loads the saved object on a user’s

request, the object is revived and continues its active life. When an object is loaded

from the object base, it is treated as clean until modified. Once a loaded object is

modified, it is almost like a newly created object. The only difference is that the

loaded object has a version stored in the object base, whereas a newly created one

does not. Thus, the life of a loaded object continues as if it were a newly created

one.

An object is usually loaded as a husk (section 3.6). A husk has pholes for its

persistable composite slots without their values instantiated initially, although the

persistable atomic slots are always instantiated. The persistable composite slot

values of a husk are loaded when they are read accessed, instantiating the pholes.

Thus, pholes make lazy loading possible. In Figure 3.1, for example, when 01 is

first loaded as a husk, the loading of a r r a y -10 and l i s t - 2 0 is delayed until their

corresponding slots are read accessed.

When the number of persistable objects in virtual memory reaches a certain

limit, some objects (determined by the virtual object memory algorithm described

in section 3.12) are flushed to free up some space in order to improve the system

36 3. Language Extension via Metaprogramming

2The limited treatment of class evolution currently being supported by MetaStore does not
include modified methods.

performance. When an object is flushed, it turns into a husk. A flushed object is

exactly like one just loaded as a husk. A husk will never be attempted for flushing.

In Figure 3.1, l i s t - 2 0 is shared by two objects through slots d of 01 and f of

02. Handling the persistence of shared structures is also made possible by the use

of pholes (section 3.11).

Addition of OID, addition and removal of pholes, slot level persistence, keeping

track of dirty bits, lazy loading, virtual object memory, handling the persistence

of shared structures, and language syntax extension are all done, most exclusively

and others partially, by using the metaobject protocol of CLOS (section 3.8).

Building on this brief overview, the major issues involved in the life cycle of a

persistent object are described in detail in the remainder of this chapter. The Store

portion is detailed in Chapter 4.

3.2 Programmer’s View of MetaStore

Some programming conventions are added for the users of MetaStore to follow.

A few minor semantic changes to CLOS were also made for performance reasons.

3.2.1 Programming Conventions

A user program must follow some programming conventions and interface with

the library provided by MetaStore to use the persistent behavior of objects.3

1. Observing a minor extension in syntax of the def class macro in CLOS when

defining a class.

2. Calling functions to initialize MetaStore, to define keyed classes, to name

objects, to save objects, to load objects, to delete objects, to deal with check

3By a user program, we mean the application that uses MetaStore, e.g., CDRS. Thus, a user
programmer is one who develops an application using MetaStore, e.g., one of CDRS implementors.

3.2. Programmer 's View of MetaStore 37

points, to signal dirty objects,4 to deal with model files, to control the high

water mark for the virtual object memory, to deal with clustering, and to deal

with versions.

In this section, only item 1 is described. The ones in item 2 are described in sections

where the related subjects are described.

The syntax of the def class macro in CLOS must be extended if we want the

instances of the class being defined to behave as persistable objects. Let us look at

an example of a user defined persistable class to see how one is extended:
(defclass student ()

((name :initform "")

(id :initform -1)

(major :initform 'undecided)

(hobby :initform 'guitar :TRANSIENT T) (1)

)
(:METACLASS PERSISTENT-METACLASS)) (2)

In the example above, two things are added to deal with persistence: one is

mandatory and the other optional. First, the mandatory keyword :METACLASS in
(:METACLASS PERSISTENT-METACLASS)) (2)

declares that the class student is persistable, thus making all of its instances

persistable objects. Second, the optional slot option :TRANSIENT in
(hobby :initform 'guitar :TRANSIENT T) (1)

declares that the slot hobby is not persistable, thus making its value nonpersistable

even though the rest of the object is. An object is transient if it is not persistable.

The longevity of a transient object ends at the termination of the process that

created it.

CLOS supports the built-in slot options :type and : allocation for slot def

initions and in MetaStore another one, :transient, is added with the semantics

given above.

4An ideal solution would not require this, but a solution chosen in MetaStore for pragmatic
reasons requires it.

38 3. Language Extension via Metaprogramming

3.2.2 Semantic Changes

Semantics of CLOS is preserved with a few minor exceptions. In supporting

persistence, the sharing of composite values is restricted to the direct values of

composite slots for performance reasons. For example, an array that is referenced

by another array that is the value of a composite slot cannot be shared unless it is

wrapped as an object (section 3.11.3).

As we will see in section 3.10, we support incremental saves of modified objects.

To do this, we maintain dirty bits in each object. Although an algorithm to handle

the dirty bits (the ideal solution) that preserves the semantics of the language with

minor help from the compiler exists, we chose in MetaStore one that requires some

help from user programs, thus not preserving the semantics, because:

• The ideal solution would not be efficient enough for an object-intensive appli

cation to use.

• The ideal solution requires some help from the compiler, which is not feasible

under our implementation.

• The required help from user programs is not very substantial.

3.3 Object Identity

To support object persistence and sharing, each object must have a unique

identity (ID). It is a persistent, or logical, ID, as opposed to a volatile ID, which

is the virtual address of an object. Volatile IDs cannot survive the termination of

the process that created the object, whereas a persistent ID can when the object

is saved in the object base. In MetaStore, a reference in virtual memory from one

object or a variable to another object is done via a volatile ID, and the persistent

ID is stored as a piece of state information inside the object. The persistent IDs

are then used for addressing persistent objects.

3.3. Object Identity 39

In MetaStore, a true object ID (OID) is implemented as a pair of a file ID and

an object ID. Because the object base consists of a collection of design/model files,5

each model file is assigned a unique file ID. Each object in a model file is assigned

a unique ID also. Thus, given an OID (a file ID /object ID pair), any object in the

entire object base can be identified. A user program has a read access to an OID,

but a write access is not allowed.

In the current implementation, a model file can have up to 229 objects, and

the object base can have that many model files. This limitation, imposed by the

hardware, should not be a problem dealing with a CAD application such as CDRS.

A model file considered large in CDRS consists usually of about 50,000 objects.

3.4 Object Persistence

An object begins its life as a persistable object when it is first created as an

instance of a persistable class. A persistable object then becomes persistent when

it is eventually saved to the object base by one of the following causes:

• It is explicitly requested by a user program to be saved.

• It is saved because a checkpoint (section 4.4.2) is created.

• It is saved because a version (section 4.5) is created.

• It is reachable from a persistable or persistent object.

An object B is reachable from another object A if there exists a chain of references

starting from A to B. Reachability is computed using only the persistable slots of a

persistable object.

40 3. Language Extension via Metaprogramming

5See section 4.1 for the architecture of object bases.

3.5 Structure of Memory Objects

The representation of a normal CLOS object can be viewed as a record structure.

For example, an object with four slots: a. b, c, and d with the values 3 .4 , a r r a y -10,

50, and l i s t - 2 0 respectively, has the structure shown in Figure 3.2.

A persistable CLOS object with the same set of slots and slot values as the one

in Figure 3.2 is represented differently in MetaStore. We distinguish atomic slots

and composite slots. An atomic slot is a slot whose value is of a primitive type. For

example, a slot whose value is a number, a symbol, or a string is an atomic slot. A

composite slot is a slot whose value is not of a primitive type. For example, a slot

having an array, a list, a structure, or an object as its value is a composite slot. In

Figure 3.2, a and c are atomic slots, and b and d are composite slots.

Because the smallest granularity of persistence in MetaStore is a composite slot,

we add a placeholder,6 which is termed a phole in MetaStore, between an object

and each of its composite slot values if the slot is declared persistable. Thus, a

persistent counterpart of the object in Figure 3.2 looks like the one in Figure 3.3.

A phole contains information such as dirty bits for incremental saves, reference

counts to deal with sharing, version information, slot ID, and the value of the slot

which would be n i l if it is not yet loaded.

6MultiScheme [35] uses placeholders as the primary vehicle connecting the scheduler with the
underlying support for parallel processing.

3.5. Structure of Memory Objects 41

a 3.4

b array-10

c 50

d ---------- - (list-20)

Figure 3.2. A transient CLOS object

42 3. Language Extension via Metaprogramming

a 3.4

b pholel array-10

c 50

d phole2 ---------- - (list-20)

Figure 3.3. A persistable CLOS object

Memory

01 : a 3.4

b pholel

c 50

d phole2

Disk

array-10

---------- (list-20)

Figure 3.4. A husk object

3.6 Husks and Granularity of Persistence

When an object is to be loaded from disk, only the husk of the object is first

loaded. A husk object has all of its persistable atomic slots instantiated, but each

of its persistable composite slots points to a phole. A phole at this point is empty

except that it knows where in disk the value of the slot is located. When the

object in Figure 3.3 is first loaded as a husk object, it would look like the one in

Figure 3.4. When a persistable composite slot in a husk is not yet loaded, the phole

corresponding to the slot has enough information on how to get the value of the

slot, resident in disk. The notion of a phole is much like future in Multilisp [17].

As a loaded persistent object (a husk) is accessed, it eventually becomes a fully

instantiated memory object.

PCLOS [40] also uses the notion of a husk object, but with a rather different

meaning. A husk in PCLOS is a placeholder for an object, an instance of a class,

and it is used to make memory-resident references to the instance, that is not yet

loaded, work properly. Thus, a husk there is much like a phole in MetaStore, except

that a phole is used for a composite slot, whereas a husk in PCLOS is used only

for objects. The notion of a husk object as used in MetaStore does not exist in

PCLOS.

One of the main differences between PCLOS and MetaStore is that of the

granularity of persistence: the smallest grain size in PCLOS is an object, whereas

that in MetaStore is a composite slot.

Based on our experience with CDRS, on the average about 80% of an object is

occupied by composite slot values, and it seemed important to control persistence

at this grain size for the following reasons. With the file-based, batch-mode object

persistence in CDRS, a realistic car model would occupy so much of virtual memory

that there were times when the system could not even complete a garbage collection,

resulting in a system crash. Even when it managed to continue without a crash,

the performance of the system was usually unacceptably bad because of frequent

garbage collections. With a large car model loaded, each garbage collection takes

several minutes.

To keep the amount of data in virtual memory at a reasonable level to achieve

acceptable performance, MetaStore was designed in such a way that some of the

objects, which might not be immediately needed, can be removed from virtual

memory. Removing objects entirely from virtual memory causes problems with

objects being shared by multiple objects or program variables. These problems

with shared objects happen because the removed objects would be loaded again

when they are accessed again. If a program variable is hanging on to the object that

MetaStore assumes removed, then (i) the space that MetaStore assumes reclaimed

has not been reclaimed and (ii) sharing is not consistent any more, i.e., there are

3.6. Husks and Granularity of Persistence 43

at least two copies of the same object in virtual memory. Because the majority

of the space occupied by an object is occupied by the composite slot values, we

decided to control the persistence granularity at the composite slot level. This way,

we can restore most of the space occupied by an object by flushing it, thus turning

it into a husk (section 3.12), without disturbing the sharing. Detailed discussion

and solutions for shared objects and structures are in section 3.11.

3.7 Addressing Mechanisms

One of the fundamental issues in implementing persistence is that of addressing

mechanisms. The goal is to support object persistence with referential transparency.

There are two different address spaces where an object can exist at any given time:

virtual memory and/or disk. When an object moves from one space to the other,

the address that identifies the object has to adapt to the new address space. An

address in memory is called a virtual address, and an address in disk is called a

logical address. A virtual address is a volatile ID, whereas a logical address is a

persistent ID.

For example, a reference from the object A to another object B in memory is

done via a virtual address. When B is saved to disk and loaded back in again, it is

not likely that B will restore back again the same virtual address as A would still

be using in referencing B. Thus, we have to provide a mechanism by which virtual

addresses are translated to logical addresses on the way out to disk, and logical

addresses are translated to virtual addresses on the way back in from disk while

maintaining referential transparency.

Although there are many ways to deal with the addresses of persistent objects

as described in [12], we only consider the mechanisms that are appropriate at the

metalevel since MetaStore is supporting persistence at that level. Here, we focus

on two most feasible candidates:

44 3. Language Extension via Metaprogramming

• Associative O ID Addressing: Keep the logical addresses at all times and

perform an associative lookup of a logical address to find the virtual address

on every object reference.

• Pointer swizzling: Translate addresses back and forth as objects travel between

the two spaces.

Let us look at these two schemes in detail.

3.7.1 Associative OID Addressing

In this scheme, one persistable object refers to another in terms of an object

identity (OID). An associative lookup table is maintained to map an OID to the

virtual address of an object. Whenever a reference is made to an object, which is

in the form of an OID, the OID is looked up in the table to find the location of the

referenced object in memory. Thus, translation of OIDs are done repeatedly.

Because no reference translations are done while an object is being saved or

loaded, there is smaller cost at the time of loading and saving. However, there is

a constant cost on every object reference while the object is in memory. This may

be too inefficient for the object-intensive applications that MetaStore supports. A

fast access to an object and a fast reference from one object to another are a few

of the more critical aspects in an object-oriented language, and this scheme would

add a constant overhead to these.

3.7.2 Pointer Swizzling

When an object is ready to be saved, all the object references contained in the

object are converted to logical IDs. In the process of loading an object, all the

logical IDs contained in the object are converted back to virtual addresses7 by

7A variation of this algorithm is to load without any translation during the load. Reference
translations are then done when it is first referenced, thus lazily. Once a translation is done,

3 .7. Addressing Mechanisms 45

using an object table. The object table contains the mapping from persistent IDs

to virtual addresses. Between loading and saving, the loaded objects will usually

be modified repeatedly. During this middle phase, an object reference is done at

the usual virtual address reference speed.

It is possible that an object that is referenced is not yet loaded. That is, the

object that is making the reference is pointing to a phole, whose value is not

instantiated. When the referenced object is accessed, it is then loaded. Thus,

loading of objects is delayed until it is required.

In a design environment with object-intensive applications, a typical transaction

tends to load a set of objects and work for a while on them before the objects

are saved again. It tends to spend more time during the “workForAWhile” phase

compared with the loading and saving phases. During the middle phase, the design

is repeatedly modified, at which time access patterns are unpredictable, and a fast

response time is more important than the system throughput. Thus, it is important

to minimize the overhead during the middle phase.

Because MetaStore is designed to support this kind of design environment,

pointer swizzling is chosen over associative lookup scheme in MetaStore.

3.8 Metaobject Protocol in Action

Supporting object persistence in CLOS without any help from the compiler or

run-time support system requires dealing with the following:

• Separating the transient from the persistable.

• Adding and removing pholes at the time of a creation of or an access to

persistable objects.

46 3. Language Extension via Metaprogramming

keep the translations in place. This saves some time at the loading phase, but still burdens the
“workForAWhile” phase that we will describe below.

• Intercepting read and write accesses to objects to support a virtual object

memory.

3.8. Metaobject Protocol in Action 47

• Supporting persistence via inheritance.

• Intercepting read accesses to objects to support lazy loading.

• Intercepting write accesses to objects to update dirty bits.

• Adding the slot option :transient to control persistence at the slot level.

• Realizing the notion of a husk.

In MetaStore, these are handled via the metaobject protocol of CLOS. CLOS

consists of five basic building blocks: classes, slots, generic functions, methods,

and method combinations. The structure and behavior of each building block are

defined and implemented by the metaobjects of the basic building block at the

metalevel. For example, the semantics of slot accesses and the internal structure of

slots are defined by the slot-def inition metaobject.

In MetaStore, the structure and behavior of some of the metaobjects in the

metaobject protocol are modified in such ways that each of the requirements listed

above is accomplished. In this section, we describe the modifications that are made

to those metaobjects. Both structural and behavioral aspects are described, using

some sample code extracted from the working implementation.

3.8.1 Persistent Class Metaobject Class

First, a specialized class metaobject class [23], persistent-metaclass, is defined

as a subclass of the standard metaobject class, standard-class, as shown below.

(defclass persistent-metaclass (standard-class)

0)

The new class specifies the same structure and behavior as its superclass at this

point. Although the structure will remain the same, if we were to want to keep

extra information at the class metaobject class level, we would add some slots to

this class. An instance, a metaobject say M, of this class defines the behavior of a

user class, say student, whose metaobject is M. Thus, the behavior of an instance

of student is defined by M. By modifying M using the mechanism established by

the metaobject protocol, we can achieve the extension of object persistence. These

modifications are described in the rest of this and coming subsections.

3.8.2 Creating Persistable Objects

At the time a persistable object is created by a call to make-instance, several

things are taken care of: (i) Pholes are added to each composite slot if the slot is

declared persistable. (ii) The necessary information for the virtual object memory

(section 3.12) is stored in the data structure that is used by the virtual object

memory, (iii) The necessary information for handling structure sharing (section

3.11) is also stored in the appropriate data structure.

3.8.3 Persistence via Inheritance

Persistence of program data in PS-Algol [13] is done via the principle of or

thogonal persistence. In MetaStore, we chose to do it via inheritance. Treating

all the data in a program as persistable as it is done in PS-Algol is impractical

since about 90% or more of data that a program deals with are never meant

to be saved. Persistence via inheritance can easily partition all the objects of a

program into two groups: persistable and transient. Even for the objects that are

instances of a persistable class, only a small subset of them ends up being saved,

persistent-root-class is defined in MetaStore and it is inserted into the class

precedence list [23] of each persistable user class. Insertion of the root class is done

48 3. Language Extension via Metaprogramming

at initialize-instance phase of class definition [23]. This way, a user class does

not explicitly have to include the persistent root class as one of its superclasses. The

persistent root class is meant to be invisible to user programs. Because the root

class handles the object persistence, the implementation of persistence is localized

to one class and can easily be modified if necessary.

The purpose of persistent-root-class is two-fold: (i) Structurally, it adds

extra information such as an object ID (oid) and a dirty bit (dirtyp) to each

object as in:

(defclass persistent-root-class ()

((oid :initform (make-oid :oid (get-next-osid)

:mid *current-model-id*))

(dirtyp :initform t :initarg :dirtyp :accessor dirtyp)

)
(:metaclass persistent-metaclass))

(ii) Behaviorally, by defining a method on persistent-root-class, the following

are supported by the persistent root class.

• It provides the default method for checking the consistency of objects before

they are saved. In general, the default method would be a dummy routine.

Its role is to provide a method name that both MetaStore and application

programs know about so that MetaStore can send this message just before

an object is saved. Although MetaStore currently does not perform any

consistency checking, it could if necessary. One possibility would be to check

to see if an object has a valid object ID. A user program would either overwrite

the default method or define an : a f t e r method if it desires to do some checking

before an object is committed for saving. It is important to make sure each

object being saved is consistent, so that it will be useful when it is loaded back

for a later use. What it means for an object to be consistent is left to be defined

by user programs although MetaStore could augment the meaning if necessary.

It is quite common for an object to have “wrong” data in an application like

3.8. Metaobject Protocol in Action 49

CDRS which can be fixed by this routine before it is saved. It is possible to

continue from a bug by ignoring it, thus making the data in virtual memory

inconsistent. When these inconsistent data are saved by MetaStore, they must

be fixed. Because MetaStore is not smart enough to fix inconsistencies caused

by application programs, it is important for an application program to have

the chance to fix any anomaly of an object before it is saved.

• It handles flushing out objects if the virtual object memory algorithm decides

that an object is to be flushed out (section 3.12).

• It handles encoding of objects for saving and decoding of them during loading.

Address translations are done as a part of this process.

3.8.4 Accessing Objects

Each access, read or write, is intercepted by using the metaobject protocol so

that appropriate persistence related actions can be handled.

3.8.4.1 Read Access

On a read access, if the accessed slot is a persistable composite slot which is not

yet loaded, then the value of the slot is read in from disk. If the slot is a transient

slot or an atomic slot, then the value should already be in memory and is returned.

All this is handled by modifying the behavior of slot-value-using-class method,

which is the workhorse of the user accessible routine slot-value. It is done by

defining an : around method to slot-value-using-class.

3.8.4.2 Write Access

A write access is more complicated than a read access. On a write access, in

addition to the default behavior, the following are taken care of by MetaStore with

the help of the metaobject protocol:

50 3. Language Extension via Metaprogramming

• If a transient slot is accessed, do nothing extra. Otherwise, do the following.

• If an unbound8 slot is accessed, then set the dirty bit of the object accessed.

In addition, if the new value coming in is a composite value, then add a phole

with its dirty bit set.

• If both the current and new values are atomic, set the dirty bit of the accessed

object.

• If the current value is atomic and the new value is composite, add a phole

to the slot with the dirty bit set and the reference count updated. Reference

counts are used to handle the sharing of composite slot values (section 3.11).

Also set the dirty bit of the accessed object.

• If the current value is composite and the new value is atomic, update the

reference count of the current value, and set the object’s dirty bit. This is the

case where a phole is removed.

• If both the current and new values are composite, update reference counts of

both, and set the dirty bit of the new value.

All this is handled by modifying the behavior of (setf slot-value-using-class),

which is the workhorse of the user accessible routine (setf slot-value). It is done

by defining an : around method to (setf slot-value-using-class).

3.8.5 Creating Husks

When an object is created via a call to make-instance, it happens in two steps:

3.8. Metaobject Protocol in Action 51

• An instance is allocated by the routine allocate-instance.

8A slot is said to be unbound if it has no value at all.

• The allocated instance is initialized with values specified for initf orms in slot

definitions.

When an object is to be loaded from disk, we could create an instance, say 01,

by calling make-instance and then replace the slot values of 01 with the saved

values to fully recover the original state of the saved object. This wastes some time

and space because the initialized slots by the values specified for initf orms will

immediately be replaced by the values being loaded from disk.

To eliminate this waste, we create a husk. A husk is also created in two steps:

• An instance is allocated by the routine allocate-instance.

• Only the transient slots are initialized with values specified for initf orms in

slot definitions.

The atomic persistable slots of a husk are instantiated by the saved values and the

composite persistable slots are instantiated with empty pholes. These pholes will

then be instantiated with their values when the slots are accessed.

There is one minor concern with skipping the execution of initforms of per

sistable slots if they are meant to create some side effects besides initializing the

slots. Our experience with CDRS shows that this has not been done, and I believe

this is not a good programming practice. If a user program must use, or abuse,

the initforms to create side effects, it can easily be done in some other way.

For example, an : after method for make-instance would be a preferred way of

accomplishing the same.

3.8.6 Persistent Slot-Definition Metaobject Class

While a class definition is processed, a slot-definition metaobject class is created

for each slot. We must add an extra slot option, :transient, so that each slot can

be declared as transient or persistable. We must do this in two different places:

52 3. Language Extension via Metaprogramming

• standard-direct-slot-definition: Instances of this class hold intermediate, not

fully processed slot-related information from the class definition form. We

define persistent-standard-direct-slot-definition as a subclass of stan dard- direct -

slot-definition with an extra slot, transientp, and its :initarg, :transient.

• standard-effective-slot-definition: Instances of this class hold slot-related infor

mation that has been fully processed, finalized, using inheritance rules, thus

ready to be used at run-time. We define persistent-standard-effective-slot-

definition as a subclass of standard-effective-slot-definition with an extra slot,

transientp, and its :initarg, :transient.

Thus far, we have taken care of the static parts. We also have to tell the system

which slot-definition metaobject class should be instantiated to implement each per

sistable slot. We do it for both persistent-standard-direct-slot-def inition

and persistent-standard-effective-slot-definition. These are used by two

generic functions: the former is used by direct-slot-definition-class and the latter

by effective-slot-definition-class.

Both initialization and reinitialization of instances are funneled to the generic

function shared-initialize. Here, we first make the value of slot option, :tran

sient,, be available for use.

There is one more thing to take care of. A rule for inheritance regarding

transience of slots has to be enforced. A slot is treated transient only if all classes

in the inheritance chain that define a slot with that name has the same declaration.

This is done at the time effective slot definitions are computed by the generic

function, compute-effective-slot-definition.

3.9 Incremental Loading

MetaStore supports incremental loading. An application using MetaStore can

load a set of objects by queries using names or keys (section 4.2). Once an object

3.9. Incremental Loading 53

is loaded as a husk, the values of the unloaded composite slots will be loaded on

demand. An object can be loaded either as a pure husk or as a husk with some of

its composite slots instantiated.

An object-intensive, graphical user interface based application like CDRS has

a rather difficult problem, compared with an application that interfaces, e.g., an

airline database. When a user of CDRS is ready to edit an existing car model, he

would have to load enough data to see on the screen what is already there in the

design. That is, we have to preload a subset of objects at the time of opening a

model file. In CDRS with MetaStore, some subset of keyed objects (section 4.2) will

be loaded as husks with the composite slots, that make sense to be loaded initially,

instantiated. Some of these composite slots are needed for displaying and others

are data that are commonly needed for most of user operations. The objects that

are intended to be preloaded are clustered (section 4.7) so that they can be loaded

efficiently. Once the preloading is done, other objects and composite slot values are

loaded lazily.

3.10 Incremental Saving and Dirty Bits

Objects become persistent, i.e., saved, by one of requests such as the ones listed

in section 3.4. In all cases, only dirty objects and slots are saved. Because the

smallest grain size of persistence is a composite slot, it is possible that a composite

slot of an object is saved, but not the object that owns the slot. That is, each

persistable object and persistable composite slot value has its own dirty bit.

When an object is ready to be saved, the saving algorithm works in three phases:

• All the dirty persistable composite slots of the object are saved first.

• The object itself is then saved if dirty.

• The object table is finally saved to activate the changes in the object base.

54 3. Language Extension via Metaprogramming

Let us introduce the notion of a network. Given an object, a collection of all the

objects that are reachable from the given object is called a network.

When a user program requests an object be saved, the network rooted at the

given object is saved. In this case, the user program may only be interested in

saving an object, i.e., network, even if there might be other objects that are dirty.

Just because a user program requests an object be saved, we can not save all the

other dirty objects at the same time. Cyclic references are also handled.

When a user program requests a checkpoint (section 4.4.2) or a version (section

4.5) be created, however, the situation is different. The semantics of creating a

checkpoint or a version is that all the modified persistable objects are saved. We

could save all the dirty objects on a checkpoint or a version by handling each object

in the same way as when a user program requests an object be saved, in which case

we would have to traverse each composite slot values of each dirty object to compute

the networks. However, we can do much better. We can bypass all the traversing of

composite slot values and treat each object as a leaf node. We can do so because we

can easily find all the dirty objects and composite slots in the object table, which

is memory resident at all times. The object table contains all the pholes for both

objects and composite slots. Each entry in this hash table is a pair, where the key

is an OID and the value is a phole.

How do we keep track of dirty bits? We have to maintain dirty bits for each

persistable object and its composite slots. There are different algorithms with

different characteristics: some positive and others negative. In the sections below,

we describe the problem in detail, possible solutions, and the design decisions we

made for MetaStore.

3.10. Incremental Saving and Dirty Bits 55

3.10.1 The Problem

A read access to a persistable object is not a concern. Write accesses are the

ones that concern us. Even for a write access, modifying slot values via the public

interface, i.e., via (setf slot-value), is not a problem. The problem is with

changing a slot value through the back door. For example, the following piece of

code demonstrates the problem:

(let ((arrl (slot-value objectl ;slotl)))

(setf (aref arrl 3) 4.5))

Here, the value, an array, of the slot slotl is read accessed and locally bound to

arrl. The array is then modified. However, this modification is not registered in

the phole of slotl, thus the dirty bit in the phole of slotl is not current. To make

sure this change is reflected in the phole of slotl, the user program could do the

following:

(let ((arrl (slot-value objectl *slotl)))

(setf (aref arrl 3) 4.5)

(setf (slot-value objectl 'slotl) arrl)) (1)

The extra call, labeled (1), would solve the problem since (setf slot-value)

part of the metaobject protocol in MetaStore is keeping track of the dirty bits.

However, this extra call is normally not necessary in a CLOS program. That is,

requiring this extra call changes the semantics of CLOS.

Although we used an array as an example here, all composite values except

objects pose this problem.

3.10.2 An Ideal Solution

The goal is to support incremental saving without requiring application programs

to deal with dirty bits at all. That is, we want dirty bits to be transparent to user

programs. We describe an algorithm that satisfies this goal, and point out why this

solution may not be practical.

56 3. Language Extension via Metaprogramming

Although all nonobject composite values pose this problem, we will concentrate

on arrays, which typify the problem, for describing this algorithm. If each composite

value has its own dirty bit, then the problem becomes simpler. However, that

would be too expensive, so we are adding one to a composite value only when

necessary— lazily. This solution requires a few extra things:

• A hash table containing dirty composite values.

• Overload the write access routine for arrays, i.e., (setf aref).

When an array al is write accessed as in:
(setf (aref al 3) a-new-value)

al is added to the hash table, say htl, containing the dirty composite values. Note

that only dirty ones are added to the hash table, so the number of entries in the hash

table would stay small most of the time because of frequent incremental savings.

Now, we can overload (setf aref) as follows:
(defsetf aref (arr &rest subscripts) (new-val)

c(progn (setf (gethash ,arr htl) t)

(setf (sysaref ,arr ,©subscripts) ,new-val)))

This new version of (setf aref) adds the array being modified to the hash table

in addition to the original functionality of changing an element of an array. This

assumes that the workhorse system routine for aref is sysaref. If we don’t have

access to this routine,9 then we will have to require our application programs to

use a new name for aref, say paref , which would require the following definitions

instead:
(defmacro paref (arr ftrest subscripts)

'(aref ,arr ,©subscripts))

(defsetf paref (arr &rest subscripts) (new-val)

'(progn (setf (gethash ,arr htl) t)

(setf (aref ,arr ,©subscripts) ,new-val)))

3.10. Incremental Saving and Dirty Bits 57

9W e don’t have access to this routine in the context of implementing MetaStore for CDRS
since we are using Lucid Common Lisp [30].

Thus, a user program would have to use paref and (setf paref) for any array

that can potentially be persistent. For arrays that will never be persistent, aref

and (setf aref) can still be used. This has trade-offs though. On the positive

side, for arrays that will never be persistent, we can save some time and space

since these arrays will bypass the hash table interface. On the negative side, it is

possible that (setf aref) can mistakenly be used for an array that is potentially

persistent, in which case what is saved in the object base would be inconsistent with

what is in the virtual memory. To avoid this possible inconsistency, we can require

all user programs use paref and (setf paref) at the expense of some overhead.

When a persistable object is ready to be saved, we save each persistable com

posite slot value in two phases as follows: (i) Since the smallest granularity of

persistence is a composite slot, we first traverse the value of the given composite

slot to see if any of the composite values that is a part of the slot value is dirty. If

we find a dirty one, remember the fact that there was a dirty one, thus the entire

slot value can be treated as dirty, and continue the traversal to mark all the rest

clean. Marking one clean means removing one entry from the hash table, (ii) If

found dirty, then save the entire slot value as one entry in the object base. If none

was dirty, then skip to the next slot value. Once all the composite slot values are

saved, we finally save the husk itself if dirty.

3.10.2.1 Feasibility

Let us examine the potential problems with this solution. Some are performance

related, and others are related to using a Common Lisp system that does not allow

source level changes.

• Each write access to a composite value is burdened by adding an entry to the

hash table, h t l.

58 3. Language Extension via Metaprogramming

• The entire slot value for each persistable composite slot of an object to be

saved has to be traversed to see if any is dirty. For each composite value

encountered during the traversal, at least one look up in the hash table is also

required; twice if a dirty one is found.

• When a checkpoint (section 4.4.2) or a version (section 4.5) is created, all

the persistable objects have to be traversed to locate dirty objects and dirty

composite slot values.

• Dealing with an application that is already built and needs to be ported to

MetaStore, although minor, there is resistance from programmers on changing

the syntax of the language. For example, we would have to change from aref

to paref.

Although the hash table in general would contain only a small number of entries, the

cost of adding an entry to and looking up an entry in the hash table on each write

access and at saving time concerns us somewhat. Having to traverse each composite

slot values given a short list of objects to be saved also concerns us somewhat.

However, what concerns us the most is having to traverse all the persistable objects

on the creation of a checkpoint or a version, which not only would take a lot of

time but also may be done quite frequently in the case of checkpoints.

3.10.3 A Practical Solution

What about reality?
Jeannette W ing

Extra cost associated with the ideal solution described in the previous section

forces us to use a compromise solution that seems more pragmatic, although it puts

more burden on application programmers.

3.10. Incremental Saving and Dirty Bits 59

3.10.3.1 User Programs’ Responsibilities

User programs are required to tell MetaStore about what is becoming dirty. If a

slot value is modified via the public interface, i.e., (setf slot-value), then there

is no extra responsibility on the part of an application program. However, if a user

program modifies a slot value through a back door, then it must inform MetaStore

that there is a modification being made, using one of the following ways:

• (mark-dirty objectl &rest slot-names): For each slot in slot-names,

objectl is marked dirty if the slot is a persistable atomic slot, and the slot

itself is marked dirty if the slot is a persistable composite slot. If no slot

name is given, i.e., slot-names is nil, then objectl and all the persistable

composite slots are marked dirty.

• Instead of the usual with-slots macro of CLOS, user programs can use an

alternative, with-pslots, with the following syntax and semantics. In fact,

every occurrence of with-slots can be replaced by a with-pslots.

(with-pslots (slotl (slot2 :dirty) (slot3 :dirty)) objectl

(body-of-usual-with-slots))

This says that somewhere in the body of this construct, the values of slot2

and slot3 will be modified, possibly through a back door, with-pslots will

signal to MetaStore that these slots are dirty and then call with-slots.

3.10.3.2 Dangers and Remedies

Writing a new application using MetaStore with these extra responsibilities is

not too bad, but porting an existing code is rather worrisome. If a mistake is made

by not informing MetaStore correctly on dirty bits, there is no guarantee that what

is saved in the object base is correct. Furthermore, the user of the system will not

find it out until it is too late. That is, you save a model, restart the system, load

60 3. Language Extension via Metaprogramming

it, and find out that it is not the same as what you thought you saved. Another

danger is possible hidden modifications on composite values by a library routine. A

user program calling a library routine should understand the possible modifications

and mark the dirty bits appropriately.

To remedy these dangers, MetaStore provides tools that detect possible program

ming errors. These tools would be used while the application is being developed

and tested before delivery. The following are the possibilities:

• Regardless of what the dirty bit shows, before each object or a composite

slot is saved, compare the value in memory with the one in disk. If they are

different and the dirty bit was set to clean, then a programming error is found.

Although this is a slow process, it will catch the programming errors.

• Implement the “ideal solution” and see if there is any discrepancy between

what the “ideal solution” shows and what this “practical solution” shows about

dirty bits.

At least one should be provided as a tool for application programmers, and we

chose to provide the first one for the initial implementation of MetaStore.

3.10.4 Another Practical Solution

The main disadvantage of previous practical solution was the danger of missing

a dirty persistable composite slot in case it is not marked correctly. Furthermore,

we will not be able to find out about an incorrect save until it is too late. In this

section we slightly modify the previous practical solution to correct this danger.

3.10.4.1 User Programs’ Responsibilities

Instead of requiring the programmer to mark what is dirty, we request him

to identify what is clean. With this algorithm, the default is that all persistable

3.10. Incremental Saving and Dirtv Bits 61

composite slots are assumed dirty unless identified by a user program as clean. A

user program would use:

(mark-clean object 1 &rest slot-names)

to tell MetaStore that each slot in slot-names is clean for object 1. If no slot

name is given, i.e., slot-names is nil, then all the persistable composite slots are

marked clean. If a persistable atomic slot is included in slot-names, then object 1

itself will be marked clean.

3.10.4.2 Difficulties

This algorithm lessens the danger described in the previous solution. It is not

likely to miss any dirty slot as long as application programmers stay conservative.

That is, unless they are absolutely sure that a slot is clean, they do not mark it

clean. This way, diligent programmers will get better performance than lazy ones.

This seemingly elegant solution has its own problems and they are:

• It is likely that a fair amount of clean slots will be saved because the application

programmer intentionally or unintentionally misses marking them clean.

• There is no good communication channel available between application pro

grammers and MetaStore so that the marking can be done. When an object

is accessed, read or written, in a body of a method, some of the slots can be

marked clean. For a class with many slots, it would be hard to know which

slots are for sure clean. Because it would be hard to know which methods

mark which slots clean, fewer slots would tend to be marked. An even more

serious problem is the case where an object is loaded and never accessed, read

or written. Because of the preloading (section 4.3.1) done on many objects,

it is quite likely that some of these objects are never accessed, so are never

given the chance to mark their slots clean. The metaobject protocol can not

62 3. Language Extension via Metaprogramming

help for marking slots clean on slot accesses since it is not correct to mark all

slots other than the one being accessed to be clean. Because of these reasons,

we predict that application programmers would end up marking only a small

fraction of all that can and should be marked clean, escalating the time spent

on saving objects.

Because of these reasons, we chose to implement the first practical solution for

MetaStore with the tool described in the previous section.

3.11 Shared Structures
We have seen better days.

W illiam Shakespeare

There is almost no limit on what can be shared by what in Common Lisp. That

is, a data structure in Common Lisp can have arbitrary relationships with other

data structures. For example, structures such as arrays or lists can freely be shared

by variables, arrays, lists, objects, etc. This unlimited freedom adds much difficulty

to dealing with these structures in the context of supporting persistence.

One of our research goals was to support persistence without changing the

semantics of the language with no compiler or run-time support. This turns out to

be a rather lofty goal.

There is a solution that fully supports sharing in the context of persistence,

although the cost of doing so may be too high for an object-intensive application.

There is also a solution that limits the sharing of persistent structures, but the

limitations may not be too severe to use. After illustrating the problem, we present

an ideal solution, and a compromise solution that may be practical enough to use

in object-intensive applications.

3.11.1 The Problem

When an object or a structure has a unique ID, sharing of that object or that

structure is easy to support. When an object or a structure has a unique ID,

3.11. Shared Structures 63

64 3. Language Extension via Metaprogramming

a 3.4 al:

b
c 50

02 : a 4.6

b 45
c

a3:

Figure 3.5. An array shared by two objects

one level of indirection such as a phole can be used, thus being able to handle

the persistence of shared structures correctly. Because each object has a unique

ID, sharing objects is not a problem. Sharing structures such as arrays and lists

however is a problem since they normally don’t have their own IDs. In one solution

we describe below we actually add a unique ID to each composite value. We will

also examine the cost of doing so. As with dealing with dirty bits (section 3.10.2),

we will concentrate on arrays while describing the algorithm since they typify the

problem.

Suppose a composite slot value, the array al, of the object 01 in Figure 3.5 is

ready to be saved, and also suppose that al has another array, say a2, as one of its

elements. Further suppose that a slot of another object 02 also has a2 as its value

through a third array a3. Thus, a2 is shared by 01 and 02.

This sort of sharing is perfectly legal in Common Lisp. Assuming only objects

have dirty bits, and also assuming both 01 and 02 are dirty, if both 01 and 02 are

saved, two copies of a2 will be saved: once by 01 and another by 02. When 01

and 02 are both loaded at some later time, b of 01 and c of 02 will have their own

copies of the original array a2. say a2-l and a2-2.

This is a rather simple example of sharing. To handle the sharing of composite

values in general, we have to design an algorithm that handles all the cases in full

generality.

3.11.2 An Ideal Solution

Supporting persistence for composite values in full generality requires a unique

ID for each composite value that is being shared by different objects. Rather than

blindly adding an ID to each potentially sharable composite values, we only add

one when necessary— lazily.

Here again, we use arrays as an example to describe the algorithm. This solution

requires a few extra things:

• An associative lookup table, say a hash table. This is an “e<7”-test hash table,

where a key is a virtual address for an array and a value is either an array or

a phole.

• Overload the write access routine for arrays, i.e., (setf aref).

With this algorithm, Figure 3.5 would now look like Figure 3.6. When the array

a2 becomes a value of another array al by a call:

(setf (aref al 1) a2)

the following analysis, in addition to what happens dealing with dirty bits, is

undertaken:

1. If a2 is in the hash table, say ht2, then:

(a) If the value part of a2 entry in ht2 is a phole, say phole4, then add al to

the reference count, ref errers, of phole4. This means that there are at

least three structured data that share a2 after this update.

3.11. Shared Structures 65

66 3. Language Extension via Metaprogramming

01 : a 3.4

b
c 50

al:

* pholel

a2

02 : a 4.6

b 45
c

a3:
phole3

ht2 (share): htl (dirty):

phole2:

a2 14

((al . 1)

(a3 . 2))

Figure 3.6. A persistable array shared by two persistable objects

(b) If the value part of a2 entry in ht2 is not a phole, but another composite

value, say a3, then create a phole, say phole2, and add al and a3 to

ref errers of phole2. This means that there are exactly two structured

data that share a2 at this point. This is where the lazy creation of pholes

happens, and a phole is not created until at least two things are sharing

an array. This case is illustrated in Figure 3.6.

2. If a2 is not in ht2, then add a new entry to ht2 with a2 as the key and al as

the value. This means that a2 is not shared yet, but potentially could be. This

entry is added without creating a phole because sharing has not happened, yet.

This algorithm adds a phole to each composite value when it is shared by at least

3.11. Shared Structures 67

(defsetf aref (arr &rest subscripts) (new-val)

'(progn

(setf (gethash ,arr htl) t) ;for dirty bit

(when (composite-p ,new-val) ;for sharing

(let ((in-ht2 (gethash ,new-val ht2)))

(if in-ht2

(if (phole-p in-ht2)

(push ,arr (phole-referrers in-ht2))

(let ((phole2 (make-phole)))

(push in-ht2 (phole-referrers phole2))

(push ,new-val (phole-referrers phole2))))

(setf (gethash ,new-val ht2) ,arr))))

(setf (sysaref , arr ,©subscripts) ,new-val)))

Figure 3.7. Modification to array updates for sharing

two others. The added phole, however, does not affect read accesses of composite

values. It only affects write accesses.

pholel and phole3 in Figure 3.6 are there since each composite slot has its own

unique phole unless it is sharing a slot value with one or more other slots. phole2

is there because of this algorithm. That is, phole2 is added because al and a3 are

sharing a2. phole2 contains the information about sharing.

Figure 3.7 shows how the overloading of a write access routine is modified. Arrays

are used in the example code, thus modifying the array mutating operator (setf

aref). The routine in Figure 3.7 assumes that the workhorse system routine for

aref is sysaref. If we do not have access to this routine, then we will have to

require our application programs to use paref instead of aref which would require

similar definitions instead as we saw with dirty bits (section 3.10.2).

Suppose now we want to save 01 and 02, both dirty. Suppose also that al, a2,

and a3 are dirty. First, by saving 01, we will save al, a2, and 01. At that point,

they will also be marked clean. Second, by saving 02, we will save a3 and 02, and

mark them clean. Note that by the time 02 is saved, a2 is already clean, thus not

saved multiple times. Also note that this algorithm saves each composite value as

a separate entity in the object base.

Suppose now 01 and 02 are loaded in that order by a different process at some

later time. When the value of b of 01 is loaded, the value of phole 1 will be set

with a l. The second element of a l will then get a2 loaded by using the slot ID, 14,

in the object table. Note, however, that a l references a2 directly rather than the

phole, phole2. When the value of c of 02 is loaded, a2 would already be loaded

and a3 will reference a2 directly again by going through the object table.

When an object is declared deleted by a user program, MetaStore releases all

the handles that MetaStore is keeping track of. They include both hash tables: one

for dirty bits and the other for sharing. That way, what a user program considers

garbage will be guaranteed to be garbage as long as user programs do their share

of clearing unneeded references.

3.11.2.1 Feasibility

Let us analyze the cost involved with this ideal solution. Because this solution

depends on the “ideal solution” for tracking dirty bits, supporting this ideal solution

incurs the following extra cost on top of the cost of dirty bits (section 3.10.2):

• Each write access to a composite value is burdened by the case analysis done

in the presented algorithm along with dealing with the hash table ht2 for

sharing.

• With this solution, each composite value is saved as a separate entity in the

object base, thus the granularity of persistence is a composite value rather

than a composite slot value. This algorithm would suffer much more dealing

with disk I/O because of the small grain size.

68 3. Language Extension via Metaprogramming

• The hash table. ht2, will in general be quite large because of many small arrays,

e.g., arrays of length three for point data in an application such as CDRS as

described in section 3.10.2, thus affecting each write access potentially severely.

• Although many small arrays are referenced by a parent array, sharing is not

very common in CDRS. Therefore, lazy creation of pholes is very important.

However, if an application that uses lots of sharing were to use MetaStore, the

amount of space occupied by the pholes would affect the system performance

noticeably.

Although this “ideal solution” would preserve the semantics of Common Lisp

for sharing, supporting it in the context of persistence would be too expensive in a

production quality application like CDRS. Therefore, in the next section we present

a compromise solution that seems practical enough to use and is implemented in

MetaStore.

3.11.3 A Practical Solution

Extra cost associated with the ideal solution described in the previous section

forces us to use a compromise solution that seems more pragmatic in terms of

performance, although it limits sharing composite values to some degree.

3.11.3.1 Limitations and Remedies

Supporting persistence of any composite value that owns a unique ID is not a

problem. Because the smallest grain size of persistence in MetaStore is a composite

slot value, each persistable composite slot has a unique ID. Thus, using the already

added unique IDs for composite slots, we can easily support structure sharing at

the composite slot level. Therefore, we limit persistable sharable values to objects

and persistable composite slot values.

3.11. Shared Structures 69

Because any persistable object can freely be shared, any composite value which

is not a direct slot value can be made sharable by wrapping it as an object. Thus,

the array a2 in Figure 3.6 can be made sharable by making it a slot value of an

instance of the sharable composite class, say sharable-composite-class:

(defclass sharable-composite-class ()

((sharable-composite :initform nil

:initarg :sharable-composite

:accessor sharable-composite))

(:metaclass persistent-metaclass))

With this class defined, a2 now can be replaced by an object created by calling,

(make-instance 'sharable-composite-class :sharable-composite a2)

Using the accessor sharable-composite and its dual (setf sharable-composite),

one can conveniently perform read and write accesses respectively. The cost of using

this class is one extra slot access on both read and write accesses. However, this

would give much better system performance than the “ideal solution” presented in

the previous section. Because the amount of sharing done in an application like

CDRS was so small, this is considered an acceptable alternative.

3.12 Virtual Object Memory
The Tao is an empty vessel;

it is used, but never filled.
Lao Tsu, Tao Te Ching

It is analogous to the virtual memory concept. An object resides in virtual

memory because it is either created anew or loaded from the object base. Objects

in virtual memory will live there until they are deleted. As users create more objects

or more objects are loaded due to lazy loading, sooner or later the virtual memory

of the program will be filled and reach a point where the system performance is not

acceptable. When the system is garbage collection based, as is with Common Lisp,

it occasionally reaches a point where a dynamic garbage collection can not even be

70 3. Language Extension via Metaprogramming

performed, resulting in a system crash. For example, this problem has happened

many times with CDRS.

The virtual object m em ory idea is to handle this problem. As the number of

objects or the amount of data increases in virtual memory, MetaStore monitors the

objects in virtual memory and flushes some of them out to the object base. When

an object is flushed out, it becomes a husk. At some later time, if the object is

accessed again, the accessed slot will be instantiated again as usual. Because on the

average about 80% of an object is occupied by composite slot values based on our

experience with CDRS, flushing out some of the objects that will not be accessed

for some time will improve the system performance. This was one of the reasons

why we decided to control the persistence at the composite slot level.

In MetaStore, we chose to flush out an object and keep the husk rather than

letting the whole object go. Because objects can be shared by variables, other

objects, etc., it is important to keep at least the husk portions of objects when they

are flushed out. Suppose we did not. That is, MetaStore throws away an object,

say 01, which is referenced by a user variable, say vl. Later, if 01 is requested

again by a user program, 01 will be loaded again because 01 does not exist as far

as MetaStore is concerned. However, this new 01 is different from the one vl is

still holding on to, thus resulting in two different copies of 01. We could solve this

problem by keeping one level of indirection on objects, but it is not as efficient as

keeping husks around.

For this scheme to work properly, we restrict on how a composite slot value is

used. When a composite slot value is obtained, a user program can only store it in

its short lived local environment, e.g., a let binding, or in a slot of an object, but

nowhere else. Suppose it was stored in a global variable, say gl, and subsequently

the object is flushed. If the same slot is read accessed and the newly loaded value

is stored to another global variable, say g2, then there are now two different copies

3.12. Virtual Object Memory 71

of the slot value: one held by gl and the other by g2. Short lived environments

are fine because the lifetime of a local environment will not outlive the time taken

by flushing and a reaccess because an object is never flushed unless it has not been

accessed for a long time. When a slot value is returned, it is usually stored in a

local environment in practice. Storing it in a global variable can always be omitted

because the object itself can be considered a global environment. Storing the value

in a composite value can always be done by wrapping it as an object as was done

for structure sharing. Storing a returned composite slot value in an object is also

fine because of the way MetaStore supports structure sharing with pholes.

How do we decide how many objects to keep in virtual memory at any given

time? How do we decide which objects to flush out? We answer these questions in

the following subsections.

3.12.1 High Water Mark

MetaStore maintains a programmable high water mark, which shows how many

objects are to be kept in virtual memory at any given time. Because it is hard and

expensive to keep track of the amount of data in virtual memory in terms of, say,

the number of bytes or words, MetaStore uses the number of objects as a gauge.

The number is obtained initially from the experience of using an application

like CDRS, and later by tuning with different numbers. Given an application and

a machine configuration, the factors that affect this number would include: the

average object size, the typical size of a design model, the amount of available swap

space, the size of physical memory, the size of dynamic area available for garbage

collection assuming the system is garbage collection based, the efficiency of this

algorithm, etc.

Although it would be ideal to find an optimal number, it would be almost

impossible to do so. Thus, we should aim at finding a rather conservative number.

72 3. Language Extension via Metaprogramming

Because it is impossible to tune an application to find a good number without an

application fully ported to MetaStore, we delay this part of research until one such

system is available. CDRS will soon be ported to MetaStore.

3.12.2 Least Recently Used Flushing Policy

MetaStore decides which objects to flush out using the least recently used (LRU)

flushing policy. The primary purpose of the virtual object memory is to free up

some virtual memory space occupied by objects that has least chance of being

accessed again. Therefore, it seems most appropriate to free up the space occupied

by objects that have not been accessed the longest.

When an object is accessed, read or written, the order of objects being accessed

is maintained by MetaStore. This is done by intercepting s lo t -v a lu e and (s e t f

s lo t -v a lu e) via the metaobject protocol. Along with the high water mark, Meta

Store monitors the number of objects in virtual memory using an abstract data

type, high water watch, which supports the following operations:

• hww-init: Initializes it to an empty list.

• hww-add: Given an object, if it is already in the list, it is moved to the end of

the list. If it is not, it is added to the end of the list. If the length of the list

is longer than the high-water-m ark, then the system flushes all the objects

beyond the value of high-water-m ark at the front of the list. We have an

option of flushing out one or some number of objects at a time whenever the

number of objects in virtual memory reaches high-water-m ark. We decided

to flush out only clean objects for a few reasons: (i) It will be rare to find a

dirty object at the front of the list because of the incremental savings done

frequently and because there are in general many objects loaded into virtual

memory at any given time. When the number is small, there is no reason to

3.12. Virtual Object Memory 73

worry because it will be much smaller than the value of high-water-mark, the

minimum of which is set sufficiently large, (ii) It makes other algorithms such

as checkpointing much simpler. An already flushed object, a husk, is never

attempted for flushing.

• hww-remove: Removes an object from the front of the list and flushes it.

• hww-delete: When an object is deleted, it is deleted from the data structure

used by the virtual object memory. This is different from hww-remove in that

this does not worry about flushing the object.

3.12.3 Feasibility

It is not unusual to have about 20,000 to 40,000 objects in a typical design

model, say of a car. The concern is the fact that this long list may have to be

traversed rather frequently. With a list implementation, the efficiency analysis for

each operation of high-water-watch would be as follows:

• hww-init: 0 (1).

• hww-add: To optimize the add operation, MetaStore keeps a small buffer of

most recently accessed objects.10 The size hww-buffer-size of the buffer is

programmable, too. This optimization11 improves the add operation substan

tially, especially when the list becomes large. With this buffer, if the object

being added, i.e., the object just accessed, is in the buffer, the adding operation

10Another less efficient alternative would be to maintain the t a i l -p o i n t e r to the end of the
list. This is to optimize the case of repeatedly accessing the same object, which tends to happen
a lot within a method, the object being added is first checked against the last one in the list. This
still happens with the implemented buffer algorithm. W ith this optimization, repeated accesses
to the same object run with 0 (1) efficiency.

n This idea is used in many areas of software systems. To name a few, caching in paging
algorithm and ephemeral garbage collection are implementations of this idea in different disguises.

74 3. Language Extension via Metaprogramming

is skipped altogether. Because high-water-mark is always substantially larger

than the buffer size,12 this approximation would not affect the correctness of

order in the list measurably. A typical operation in a design environment such

as CDRS touches only a small number of objects and a number slightly larger

than this number would be a good candidate as the size of the buffer. It is

currently set at 20.

However, it still requires an 0 (n) search to see if the object is already in the

list or not, and to delete it from the list if it is in the list. Rather than blindly

performing a delete operation, it only deletes one if the object is actually

in the list. That way, this O(n) search to delete is performed only when

necessary. This is made possible by keeping an extra slot, in-hww-p, in each

persistable object. This slot is updated at the time an object is accessed by

either slot-value for a read or (setf slot-value) for a write.

Checking the length of the list also takes 0 (n) and it has to be checked on every

call to hww-add in a naive algorithm. In our design, we keep the length in a

variable and update it as hww-add, hww-remove, and hww-delete are performed.

Thus, computing the length of the list is 0 (1).

Thus, this operation overall is O(n), but quite efficient one because of the

optimizations done.

• hww-remove: Theoretically, it is 0 (n) because of the possibility that the first

one in the list is a dirty one. In practice, however, it is 0 (1) since the chance

of finding a dirty one at the head of the list is almost nil. When we do find

a dirty one at the head of the list, we relocate it to the end of the list as if it

3.12. Virtual Object Memory 75

12MetaStore prohibits a user program from setting the buffer size to a small number. That is,
there is a default minimum set by MetaStore.

was just accessed. That way, we will not find the same dirty one at the head

of the list continuously affecting the performance.

• hww-delete: It is 0 (n) because the one being deleted could be anywhere in the

list. This operation is not performed very frequently and in-hww-p is used

when done.

Another possibility would be to keep objects for the high water watch in a sorted

binary tree using the time an object is accessed as the sort key. This would give an

O(log n) search for each object. It is doable since a simulated time in the form of

an integer can be used, or universal time values are available in Common Lisp, but

getting the time and maintaining a sorted binary tree may outweigh the benefit of

faster search time.

Another possibility would be to keep time, but sort the objects only when asked.

Thus, flushing happens only when a user program requests. If solutions, that

are transparent to user programs, are impractically slow, then this would be an

alternative.

3.13 Portability
Strange is your language and I have no decoder . . .

Peter Gabriel

MetaStore is designed to be portable because both M eta and Store are. It

is currently implemented using Portable Common Loops (PCL) [7] with Lucid’s

Common Lisp 4.0 [30]. The current implementation was based on the CLOS

Specification [8,46] and the metaobject protocol described in [23]. Therefore, Meta

Store is portable as long as the CLOS implementation is compatible to these. A

few deficiencies in the current specification of the metaobject protocol of CLOS

are found in extending CLOS with object persistence thus making the current

implementation of MetaStore less portable, and they are discussed in section 5.1.

76 3. Language Extension via Metaprogramming

PCL was chosen because LucicTs CLOS version 4.0 was not complete to the CLOS

specification.

As far as Common Lisp is concerned, MetaStore is portable as long as the

implementation of Common Lisp is compatible to the specification in [46].

3.13. Portability 77

4
Persistent Object Store

Oh, hidden so deep yet ever present!
Lao Tsu, Tao Te Ching

Store in MetaStore is a persistent object store that provides a database manage

ment system for object-oriented languages that support persistence. It is general

purpose and language independent. The current implementation supports lan

guages that can interface with Common Lisp [46] programs. In this chapter we

describe the essential and performance enhancing features of Store.

We begin in section 4.1 by describing the architecture of the object base in

MetaStore. It consists of two levels: model files and objects within model files.

Objects are stored to and retrieved from the object base via queries. In section

4.2 we describe three different ways of querying the object base. To enhance the

loading time on queries, we support a few indexing schemes, which are described

in section 4.3.

Because the object base can be shared by multiple processes, concurrency control

with atomic updates is critical in maintaining the consistency and integrity of the

object base. A crash recovery mechanism must also be provided so that the object

base can be recovered to a consistent state on a crash. These issues are described

in section 4.4.

Objects in the object base evolve over time and it is important to maintain

different versions of an object. We describe a version control scheme in section 4.5.

Because of the shadow paging algorithm used to support crash recovery, atomic

updates, and version control, a nontrivial amount of garbage exists in model files.

An algorithm for collecting the garbage is described in section 4.6.

As a means to enhance performance on loading objects, indexing schemes are

described in section 4.3. Another way of enhancing performance is to cluster

objects in model files, thus reducing disk seek time on loading. We describe several

clustering algorithms in section 4.7.

An application program interfacing the object base could use multiple model

files at a time, possibly merging them into one. An algorithm for dealing with

multiple open model files is described in section 4.8.

4.1 Architecture of Object Base

The object base in MetaStore has two levels as shown in Figure 4.1. It consists

of one or more model files. A model file is represented by two files: one containing

the global information about the model (indexes, keys, versions, structure sharing,

etc.), and the other containing the raw data for each object. A model file in the

object base of MetaStore can be regarded as a micro database as each model file is

similar to a flat structured database.1 In the current implementation of Store, each

model file can have up to 229 arbitrarily large objects and composite slot values.

The object base can have 229 such model files. Each model file usually contains

one or more design objects, e.g., a door or hood of a car. Each model file is also

self-contained, thus objects cannot be shared among model files. The reasons for

not allowing objects being shared among files are detailed in section 4.8.3.

Model files seem to be the right granularity for partitioning the object base. The

user’s perception of an “object” in a design environment is a real world “object,”

not an instance of a class. A user’s “object” would be represented by a collection

1An object base can have a flat structure, where the entire object base is a collection of objects.

80 4. Persistent Object Store

4.1. Architecture of Object Base 81

Note: Each arrow in this figure means “consists of,”

thus an object base consists of n model files.

Figure 4.1. Architecture of an object base

of networks. A model file models a user “object.” For example, a model file could

contain a wheel or a door of a car. With this architecture, a typical design session

would open one or more model files for editing, thus the object base interface of

a user would be quite localized. Because of the localized access and the lack of

demand for concurrent accesses to a model file, we adopt a simple transaction

management scheme as we will see in section 4.4.

Store keeps track of all the model files making up the object base, and supports

a set of interface routines for application programs to use in modifying the object

base.

4.2 Queries

In a design environment that MetaStore supports, objects are loaded from the

object base and modified in virtual memory. Modified objects are then saved

back to the object base. The smallest unit of an update operation thus is a

composite slot value. With this design a user program only needs the interface

of loading and saving objects and composite slot values. Any modification is done

by using the host programming language in use. In this regard, the interface to

the object base in MetaStore is simpler than a general purpose database system,

which normally supports a general purpose query language. The object-oriented

database system Orion [5], for example, provides its own custom query language,

the syntax of which is very similar to Smalltalk [16]. Orion also supports query

optimization by automatically determining an optimal path to execute a given

query. GemStone supports an object-oriented language called OPAL [33] which is

also used as GemStone's query language.

In MetaStore objects are loaded from the object base by one of three ways:

• Preloading: Some objects are preloaded at the time a model file is opened for

editing partly because we want to reduce the time spent on queries by user

program or on lazy loading, and partly because some objects must be loaded

to display what is in a design so that a user can see even before he can start

editing the model (section 4.3.1).

• Lazy loading: On a read access to a persistable composite slot of an object,

the value of the slot is loaded if not already. This kind of loading happens

transparent to the users.

• User program queries: MetaStore supports three different ways of querying

the object base, which we will see in detail below.

Objects in MetaStore are saved by one of three ways:

82 4. Persistent Object Store

• Save an object request: A user program can request for an object to be saved.

MetaStore treats the given object as a network by saving the network rooted

at the given object.

• Checkpoint request: On a checkpoint request, all the modified objects are saved

(section 4.4).

• Version request: On a version request, all the modified objects are saved along

with the new version information (section 4.5).

In this section, we focus on the user program queries. An application program

can request for a retrieval of an object by one of three ways that Store supports:

query by ID, query by name, and query by key.

4.2.1 Query by Object ID

Each object has a persistent ID, unique within the object base, via which an

object can be retrieved.

4.2.2 Query by Object Name

A user program can assign a name to an object. A name for an object is unique

within the object base. A name is represented as a pair: a model file name and a

name unique within a model file. Once an object is named, the name can be used

to retrieve the object. For users of the system implemented on top of MetaStore, a

meaningful name such as door instead of an ID such as 22 is much easier to deal

with. Either MetaStore or the application program could map user’s meaningful

names to IDs for retrieval of objects from the object base. We support the mapping

in Store.

4.2. Queries 83

4.2.3 Query by Object Key

In an object-oriented design systems, there are two categories of objects: top

level objects and subordinate objects. A subordinate object without its top level

object, i.e., owner, is useless. Thus, there is no use loading a subordinate object

without its owner. For example, a top level object curve has a subordinate object

math-curve in CDRS. If a student is represented as an object and the student’s

address is also represented as another object, the student object would own the

address object.

Store provides a way for a user program to declare keyed classes. The store then

creates an index for each object of a keyed class for fast retrievals. Once a keyed

object is loaded, its composite slot values are lazily loaded when read accessed.

Thus, keyed objects in Store are top level objects. A subordinate object of a keyed

object would be a part of a composite slot value of the keyed object. From our

experience with CDRS, only about 4% of all the objects in a model file are keyed

objects.

When retrieving a keyed object, a user program can optionally supply a set of

slot name/slot value pairs. The store then retrieves only the objects that meet the

constraints supplied by the user program. This way, only a subset of all the objects

of a keyed class can selectively be retrieved. For efficiency reasons, we restrict the

user supplied slot name/slot value pairs to be those of atomic slots.

4.3 Index Management
answer me speedily

Job 31: 37

Indexes are used to speed up object retrievals from the object base. In Orion [25]

a single-class index is defined to be an index that is maintained on an attribute of a

single class, and a class-hierarchy index to be an index on an attribute of all classes

of a class hierarchy rooted at a particular class. Orion supports only single-class

84 4. Persistent Object Store

indexing. In GemStone [32] collection objects such as sets and bags may be indexed

with values of slots being used as keys. It supports two schemes: indentitv indexing

and equality indexing.

Store supports a simple indexing scheme different from both Orion and Gem-

Stone. In Store indexes are maintained on named objects and keyed objects in

an index table, which maps a persistent ID to a location of a model file. When

a named object or a set of keyed objects is requested, the store retrieves them

efficiently using this table.

Named objects are simple to handle with a name table and an index table because

the name table maps a name to a persistent ID.

Retrieving keyed objects selectively using slot name/slot value pairs as described

in section 4.2.3 may be quite inefficient as the number of keyed objects becomes

large. There are at least two different ways to handle this difficulty. One is by

preloading keyed objects and the other by a more elaborate indexing scheme similar

to the single-class index scheme of Orion. We now describe both schemes and

explain why we chose the preloading scheme in Store.

4.3.1 Preloading Objects

In the preloading scheme, keyed objects are preloaded at the time a model file

is opened for use. Given objects of a preloadable class, a user program can even

specify what portions of the objects are to be used. Depending on what kind of

session is intended, different preloading schemes can be executed. For example,

opening a file to edit a model by modifying curves and surfaces in CDRS requires

quite a different set of slots to be instantiated than opening a model file to view

with photorealistic rendering.

Named objects can also be preloaded. An application program may in some cases

want to preload nonkeyed, unnamed objects, i.e., subordinate objects described in

4.3. Index Management 85

section 4.2.3. It can do so by calling a function that defines a preloadable class,

whose instances would then be preloaded. A class defined to be preloadable by this

call is different from a keyed class in that no index is created for a class that is

defined as preloadable.

All preloadable objects, including their persistent composite slot values, are

separated at the top of the model file so that they can be sequentially read in

when the model file is opened. Each design application would have a small number

of modes of preloading. In CDRS, for example, we would use only two modes:

modeling and rendering. When a model file is opened for a session, it can be

opened for one or a combination of the defined modes. When the number of modes

becomes large, we must handle complicated semantics of partitioning a model file

into preloadable sections. There would be a section allocated for each mode in a

model file in addition to a section that contains portions of objects that are common

to all modes. For example, a model file in CDRS would have four sections:

• A common section that is preloaded in any editing session

• A section that is loaded only for a modeling session

• A section that is loaded only for a rendering session

• A section that will be lazily loaded.

Clustering objects and composite slot values into different sections in a model file

is done with the modes defined by a user program while the model file is garbage

collected. Detailed description on how mode information is used in clustering

preloadable objects is deferred until section 4.7.1.

The amount of preloading an application chooses to do has a direct effect on

the amount of lazy loading that will be done. The goal is to maximize preloading

without compromising system performance too much, so that lazy loading can be

minimized.

86 4. Persistent Object Store

4.3.2 Elaborate Indexing

This scheme, which is similar to the single-class indexing scheme of Orion [25],

would extend the idea of keyed classes to slots. A user specifies slot name/slot

value pairs at the time a keyed class is defined. For example, a user program can

tell Store the following:

(define-keyed-class 'curve 'type ’(:selected :general))

to mean that indexes are to be created for the slot name type for two possible slot

values: : selected and : general for the class named curve. With this definition,

all the curves whose type is : selected or :general can efficiently be retrieved.

If many slot name/slot value pairs are required for an application, supporting

this scheme would add much overhead in index management, not in the complexity

of algorithm but in the number of indexes that must be maintained. Based on our

experience with CDRS, only a few pairs would be sufficient. CDRS, for example,

uses only one pair. Even with other CAD systems, the number of pairs would in

general be quite small.

Implementing this scheme would add extra overhead to object creation and write

accesses to objects. Slot value modifications must be monitored for changes such

as from : selected type to : general of a curve in CDRS. This scheme is easy to

support via metaobject protocols, but adds extra cost to each object creation and

slot access.

4.3.3 MetaStore’s Choice

We chose to use the “Preloading” scheme instead of the “Elaborate Indexing”

scheme in Store because of the following efficiency concerns:

• Based on our experience with CDRS, a user would be more willing to wait a

few extra minutes due to preloading at the time a model file is opened than

4.3. Index Management 87

putting up with excessive lazy loading on the top level keyed objects on the

fly as he is using the system. A well-tuned preloading will make the system

much more efficient.

• The “Elaborate Indexing" scheme adds a constant overhead to each object

creation and slot access although the performance of an object-oriented appli

cation depends heavily on the speed of object creations and slot accesses.

4.4 Transaction Management
many shall run to and fro

Daniel 12: 4

Simultaneous, conflicting modifications can occur when multiple concurrent trans

actions execute in an uncontrolled manner. Therefore, concurrency control is

necessary in order to maintain database consistency and integrity. In section 4.4.1

we describe how atomic updates on transactions are achieved with the concurrency

control scheme adopted in Store. Recovering from a crash is described in section

4.4.2.

4.4.1 Concurrency Control

In Store the granularity of concurrency control is set at the model file level. Both

Orion [24] and GemStone [33] support more elaborate mechanisms for concurrency

control than the one we support in Store. Mneme [37], although not implemented

yet, also has a more elaborate design than Store for concurrency control. Concur

rency control in these other systems are more elaborate in the sense that they use

a smaller grain size, namely an object. We chose the simpler scheme in Store since:

• Each model file is really an “object” (a real world “object” such as a hood

of a car) to the end user’s perception. A user “object” consists of one or

more networks. There are usually rich relationships among objects within a

88 4. Persistent Object Store

network. All the objects making up a network must be saved successfully in a

save transaction. Therefore, the object level concurrency control scheme may

be not only an overkill but also complicated to support for design applications.

Based on our experience with CDRS, we did not see any real reason to support

concurrency control at the object level. For instance, a p o in t, a curve, or a

surface would not mean much to be retrieved alone with a write lock based

on the reasons given for the architecture of the object base for Store in section

4.1.

• Each model file is kept self-contained (section 4.8).

Store uses the standard transaction model with read- and write-locks [52], where

locking is done on a model file. With this model multiple read-locks can be applied

to a model file, whereas no other lock, read or write, can be applied to a model file

if a write-lock is already applied to the file. In Store an update transaction would:

1. obtain a write-lock on a model file,

2. preload all the appropriate objects that are meant to be preloaded (section

4.3.1) after loading the object table information,

3. modify some objects,

4. save the modified objects followed by the save of the object table,

5. and finally release the write-lock.

This would repeat until a user session is done. Because step 2 above would in

general take a long time, we modify this transaction model somewhat as follows

for efficiency reasons. We augment the model with the nested transaction idea [6].

With this augmentation, a process would:

4.4. Transaction Management 89

1. obtain a write-lock on a model file at the start of a session (We call this lock

a checkout-lock.),

2. perform a series of nested transactions,

3. and finally release the write-lock (checkout-lock) when the session is finished.

Each nested transaction would simply perform an update transaction without

having to worry about locks at all. Let us call the top level transaction that obtains

a checkout-lock a checkout transaction. Then, a checkout transaction obtains and

releases locks, whereas nested transactions are the ones that update a model file in

the object base. These nested transactions are important because a crash recovery

can be made to the start of a nested transaction rather than to the beginning of a

checkout transaction as we will see in the next section.

A model file is modified by a series of atomic transformations of the model file

from one consistent state to another, where each transformation is done by a safe

update transaction. A transaction is said to be safe if it transforms the object base,

i.e., a model file, from one consistent state to another via an atomic update without

a crash.

An atomic update in Store is achieved by using the shadow paging algorithm

[51]. With this algorithm when a write of an object is to be done, it is done to a

different place than the place where the original value of the object is located. Both

PS-Algol [13] and GemStone [33] also use shadow paging for their atomic updates.

W'hen a modified object in a network for an update transaction is ready to be

saved, it is written to the end of the model file that is currently checkout-locked.

It would be ideal to write a modified version of loaded objects back to the same

location where the originals are located. It is in general not easy to do so because

a newer version of an object may be different in size from the original. We chose to

write objects at the end of the model file in Store because we want to (i) support

90 4. Persistent Object Store

multiple versions (section 4.5) of objects in a model file, and (ii) be able to recover

back to a coherent and consistent state of the object base in cases of system failures

or programming errors.

Each nested transaction (incremental save) would involve one or more objects.

As each object2 is saved, the phole, associated with the object, in the object table

remembers the new location in the file where the new write is done. After all the

dirty objects participating in an incremental save are saved with the corresponding

pholes updated along the way, the object table is written out to a temporary file.3 If

the object table is successfully written out to the temporary file, then it is renamed

to the object table file, of the currently checkout-locked model, that the object

base knows about. Thus, the atomic update of an incremental save depends on this

last step of renaming the temporary object table file, the “commit” step. If the

system crashes during the commit step thus not correctly renaming the temporary

file, we would lose the editing that has been done since the last such commit.4 If

the system crashes before the commit, then all the write accesses done to the raw

data portion of the model file are not reachable from the saved object table and

become garbage, which will later be collected (section 4.6). In GemStone collecting

garbage generated by failed transactions seems a major overhead because the entire

database must be collected [33], whereas collecting garbage in Store is a trivial task

since only the model files that are currently open need to be treated and each model

file can be garbage collected in isolation due to the “self-sufficient” property of each

2A composite slot is handled similarly and we only describe objects for the simplicity of
describing the algorithm.

30n e possible improvement to this design would be saving the object table incrementally.

4In fact, we could augment our algorithm so that after each such crash, we can check to see if
there is a such temporary object table file. If so, go ahead and rename the temporary file. We did
not include this into the initial design since (i) The chance of this happening is very slim, (ii) The
temporary file may not be complete either, which is not easy to check. Even if a crash happens,
the stake is not very high because of frequent incremental saves.

4.4. Transaction Management 91

model file in Store.

One disadvantage of the shadow paging algorithm is that it in general generates

nontrivial amount of garbage in a model file, thus requiring object base garbage

collection. Although this is a nuisance, we decided that supporting version control

and being able to recover from system failures or programming errors far outweigh

being a nuisance. Even without garbage collections, objects and composite slot

values in a model file are rearranged for object and slot clustering anyway (section

4.7). Thus, combining these two seems reasonable especially because they are done

during off-hours in batch mode.

4.4.2 Crash Recovery

The most common tool for protecting against loss of data in the face of system

failures is the log or journal, which is a history of all the changes made to the

database, and the status of each transaction. Although the resilient protocol via

the “Redo'' recovery algorithm [52] is a common one used in many database systems,

we decided to use a simple log based crash recovery protocol via the “checkpointing”

algorithm in Store. Thus, the system using Store would be able to recover to some

coherent and consistent state of objects if the system crashes.

While using the system, a user can request checkpoints along the way. A

checkpoint is a consistent state remembered of a model file so that it can be

recovered if necessary due to a system crash or a user request to support features

such as an undo operation.

A checkpoint in Store is a snapshot of a model file at a given time. When a

checkpoint is created, an incremental save of all the modified objects is done as

described in section 3.10. When a dirty object is saved, the previous location of the

object in the model file is remembered. Thus, a snapshot is a list of logical ID/file

position pairs corresponding to the objects and composite slots which have been

92 4. Persistent Object Store

modified since the last checkpoint. When two checkpoints are made along the way,

say c l at time t l and c2 at time t2 in that order, the checkpoint c2 is basically

remembering the state of the model file at time t l .

Checkpoints are done incrementally to save some space, although it would require

extra processing time to restore an old checkpoint. Suppose four consecutive

checkpoints, say cl, c2, c3, and c4, have been made. Now, if we want to go

back to the checkpoint c2, then we must go through c4 and c3 in that order to get

to c2.

It is algorithmically easy to support an arbitrary number of checkpoints. How

ever, for practical reasons, the limit is set to a small number that can be configured

by a user program.

The operations supported by Store dealing with checkpoints are as follows:

• Create a checkpoint: A new checkpoint with an optional name can be created.

If a name is passed, it will be remembered and returned at the end of this

operation. Otherwise, a Store generated name is used and returned. In any

case, a name is guaranteed to be unique within a model file.

• Goto a checkpoint: A previously defined checkpoint can be restored given a

name. Going back to the most recent one can be done easily by a special

syntax.

• Delete a checkpoint: A checkpoint can be deleted given a name. Deleting

the most recent one is simple. However, deleting one in the middle of the

checkpoint history is a little tricky. If four checkpoints have been created, say

cl, c2, c3, and c4 in that order, and c2 is to be deleted, then c3 is replaced

by the union of c2 and c3. If there is a common entry in both checkpoints,

then the one in the earlier one, c2 in this case, is kept.

4.4. Transaction Management 93

When multiple models are merged, checkpoints are always applied to the base

model (section 4.8). This is consistent with how merged models are handled since

only the base model is write accessible.

Checkpoints are not persistent, i.e., not saved in a model file because they are

perceived to be temporary. In comparison, versions as described in the next section

are meant to be permanent and are saved to disk.

4.5 Version Control

Version management is important for engineering databases because design is

often an experimental process, the scope of which changes with time. It is necessary

to keep track of the evolution of design objects, and the changes made to a design by

various transactions. It is also important for concurrent cooperative work because

different clients may work simultaneously on different versions of the same object,

rather than wait for each others’ transaction to complete.

The granularity of version control can be done either at the model file level

or at the object level. Both Orion [10] and ObServer [55], for example, use the

object level version management, but selectively. That is, a versionable object is

an instance of a versionable class or that of a subclass thereof.

The model file level scheme is algorithmically simpler and semantically easier

than the object level scheme. The key difference to note is the degree of involvement

on the part of end users. With the grain size at the object level, a user has a finer

control over objects’ versions. It is not without its cost though. A user must

constantly worry about which objects are at what version level and which others

are at what other level, and so on. Because a model file is a good grain size of

partitioning the object base as described in section 4.1 and each model file would

contain the design of a real world object, version control at the model file level is

more meaningful than one at the object level for the end users. If, on the other

94 4. Persistent Object Store

hand, the object base is flatly structured with objects as direct targets of queries,

then supporting version control at the object level would be more appropriate.

In Store we chose the model file level scheme, in which a version is an attribute of

a model file. When a new version is created, each object or composite slot value in a

model file acquires a new version. Each version contains two pieces of information:

version-name and f ile-position. Thus, given a version name of an object, the

given version of the object can be retrieved using the associated file position.

Different versions of an object could very commonly share the same file position

because only a small subset of all the objects in an editing session would be dirty

when a version is created. The only time two different version names of an object

get different file positions is when the object is modified and saved between those

times when those two versions are created.

A naive implementation would have each version name be associated with a file

position. Then, there would be many file positions shared by multiple versions of

an object. Let us assume for example that the following is the version information

contained in the phole for an object 01:

((vl . fpl) (v2 . fp2) (v3 . fp2) (v4 . fp3)),

where the file position of a version vl is fpl and that of v2 is fp2, etc. The file

position f p2 is shared by both versions v2 and v3. To eliminate the space occupied

by the duplicate file positions between different versions of an object, we allow two

formats for a version: a version name/file position pair or a version name alone.

With this optimization, the same version information for the object 01 would now

look like:

((vl . fpl) (v2 . fp2) v3 (v4 . fp3)).

Although only one integer value for each of some selective pairs is eliminated, this

optimization may actually save quite a lot of space. The creation of each new

4.5. Version Control 95

version would add one integer to each phole in the entire model file. If a user

chooses to create versions often with only a few objects modified, then conceivably

a lot of space overhead will be incurred. To make this optimization work, the list

of pairs in a version is kept ordered. Thus, operations such as deleting a version or

adding a new version must respect the order in the list. Although this optimization

adds some overhead in processing time, it is considered an important optimization

for space efficiency, both in virtual memory and in model files in disk.

4.5.1 Operations

Store provides the following interface for version control in the model file level

scheme with the given semantics.

• Opening a model file: When opening a model file, a version name can optionally

be specified to use a specific version. If one is not given, the latest version

is the default. Preloading of keyed objects (section 4.3.1) factors this into

consideration by appropriately ignoring unnecessary versions.

• Create a version: A new version can be created by adding the new version

information to each phole in the model file and by saving all dirty objects.

• Select a version: A different version can be selected to be the currently active

one. This operation would visit each phole in the model file and set the value

value of each phole to NIL if appropriate, also taking care of the shared file

positions. The next read access to a nullified phole would then retrieve a new

value for the phole.

• Delete a version: A version from an open model file can be deleted. This

is handled in two steps: For each phole in the open model file, (i) nullify the

value value of a phole if necessary, also taking care of the shared file positions,

96 4. Persistent Object Store

and (ii) remove a version name/file position pair again also taking care of the

shared file positions.

4.6. Object Ba.se Garbage Collection 97

• Extract a version: A version of the open model file can be extracted into a

separate model file. This is done by creating a new model file whose name is

specified by the user. With this operation, a user is given the option of keeping

the version being extracted in the original model file or not.

4.6 Object Base Garbage Collection

Because of the shadow paging algorithm used, there is in general a nontrivial

amount of garbage contained in a model file. The pattern of use that creates

garbage the most is one where a user loads objects and repeatedly modifies and

saves them.

The garbage collection algorithm used here is basically that of stop and copy [1].

As described in section 4.1, each model file internally consists of two files: one for

the raw data and the other for the global information including the object table.

Given a model file, therefore, the object table is used as the root for this garbage

collection algorithm. All the versions of all the objects and composite slot values in

the raw data portion of a model file that are reachable from the root are copied into

a temporary file. When the copying is finished, the temporary file now containing

only “good” raw data is renamed back to the original file name in the object base.

This renaming is the step that guarantees an atomic update of the entire garbage

collection algorithm.

Garbage collection is done during off hours in batch mode. The object base

keeps track of model files that have not been garbage collected so that they can be

collected at some off hours designated by the system manager. If a model file, which

has not been garbage collected, is requested for editing, the user will be warned, at

which time the user can decide to use the uncollected file with the risk of slower

loading time or ask it to be opened after being collected first.

During a garbage collection, objects and composite slot values would in general

be reorganized dictated by the order of pholes in the object table. Object and slot

clustering is also performed during a garbage collection and we now describe the

clustering scheme for Store in the next section.

4.7 Object Clustering

To reduce the disk seek time during the loading of objects and composite slot

values, they are kept clustered in the model file. Different clustering algorithms give

different benefits. An optimal clustering for one application could be drastically

bad for another, so clustering almost always involves tradeoffs between different

modes of use for the same collection of objects. Because Store is general purpose

for different kinds of applications, it is important to provide means for application

programs to use to configure different modes of clustering.

The term “clustering’' in this context refers to how closely objects are located

to one another in model files for efficient retrievals. Store does not concern itself

with dynamic clustering at the save time because of the perceived overhead of doing

so. It instead applies the clustering algorithm to a model file in batch mode. It

would incur a tremendous overhead to cluster objects being saved with the objects

that are already in disk dynamically during saves. Furthermore, saved objects are

not likely to be loaded again in the same session unless they are flushed out by

the virtual object memory algorithm (section 3.12) because objects still remain

in virtual memory even after they are saved. It would be better to increase the

high water mark a little higher to reduce lazy loading of unclustered objects than

worrying about clustering during the save time. Store, therefore, currently supports

static clustering rather than dynamic clustering.

98 4. Persistent Object Store

Because of “preloading” (section 4.3.1) that Store uses, we separate clustering

into two different kinds: one for objects to be preloaded, and the other for objects

to be lazily loaded.

4.7.1 Objects for Preloading

There are two issues to consider in the context of preloading: (i) deciding which

objects to preload, and (ii) deciding what portions of an object to preload given an

object to be preloaded.

A graphical user interface based application like CDRS requires loading at

minimum some subset of slots of geometric objects for viewing. Thus, the slots or

objects whose mission is to display an object would typically be preloaded. Based on

our experience with CDRS, we thought that it is extremely important to support

preloading of a certain collection of objects, i.e., named objects, keyed objects,

and objects that are defined to be preloadable by the def ine-preload-class call.

These preloadable objects are separated into a specific region of a model file, and

are sequentially read in at the time a model file is opened. Sequential reads are

more efficient than random reads or clustered reads. It may seem to make sense to

cluster objects of the same class together at the object level as does LOOM [20],

but it really does not because of the sequential reads.

Each session of an application can potentially use different aspects of objects.

In CDRS, for example, a user can start a session for modeling, rendering, or both.

Thus, it is important to provide a user configurable means for each mode of use.

We support the following mechanism to satisfy this need. This is similar to the

semantic clustering idea of [44]. For each persistable class, a user can optionally

specify a list of operation mode/slot name pairs. For each session, then, the husks

of preloadable objects are loaded along with the appropriate portions of the objects

depending on the mode. That is, only some subset of composite slot values of an

4.7. Object Clustering 99

object is loaded. The value of a composite slot not mentioned in any specification

is always preloaded by default. This way, diligent users get better performance,

whereas lazy users get the default performance. This is one way of passing the

domain specific knowledge down to a low level tool. Suppose, for example, the

following specification is given:

(pos-preload-cluster class-name *((:model slotl slot3 slot5)

(:render slot2 slot6 slot8))),

where slotl, slot2, slot3, slot4, slot5, slot6, and slot8 are composite slots

and slot7 and slot9 are atomic slots. With this specification, if the model file

containing this object is opened for the : model mode, then the husk and the

values of slotl, slot3, slot5, and slot4 are preloaded. Note that the value

of of the composite slot slot4 is loaded by default because it is not included in

the specification. If the same model file is opened for the : render mode on the

other hand, then the husk and the values of slot2, slot6, slot8, and slot4 are

preloaded. Again, the value of slot4 is preloaded by default.

We support a special mode, :a l l , to mean that all the modes defined for an

application are to be preloaded, thus overriding all the other modes defined.

The notion of horizontal and vertical clustering [50] is in reference to the class

hierarchy. Thus, clustering objects among which one object is making a reference

to another is considered vertical, whereas clustering objects because they all belong

to the same class would be considered horizontal. Horizontal clustering is good for

the cases where the objects of the same class are to be loaded together as in a

graphical user interface based design system that requires displaying what is in a

design even before any editing is done. Vertical design is good for the cases where

an object is to be loaded together with others that reference it. Therefore, in Store

we chose to do horizontal clustering on preloadable objects and vertical clustering

on lazily loadable objects.

100 4. Persistent Object Store

4.7.2 Objects for Lazy Loading

Lazy loading of objects or composite slot values happens because one object

references another object or a composite slot value. Thus, clustering of an object

with the structured data that are referenced by it would be vertical. There are two

issues to consider in this kind of vertical clustering: (i) deciding which objects

to lazily load, and (ii) deciding how to cluster objects that are to be loaded

lazily. The first is easy: any object that is not preloadable, i.e., unnamed objects,

nonkeyed objects, or objects of a class that is not defined preloadable by the

def ine-preload-class call, is assumed to be loaded lazily. These are the objects

that are reachable from one or more preloadable objects. The second issue is

described in the rest of this section.

There are several factors that affect loading: (i) relationships among objects, (ii)

relationships among slot values within an object, and (iii) interplay of objects and

slots with the object’s class. These factors must be handled in concert with the

typical access patterns. Adopting the preloading scheme for some objects makes

our life much easier. It not only makes clustering algorithms much easier, but also

diminishes the impact of the kind of clustering algorithms we use as we see below.

4.7.2.1 Relationships among Objects

Relationships among objects are conceptually vertical in nature because the

relationships are almost always established via one object referencing another.

Because the objects we consider here are all intended to be lazily loaded, it

would make more sense to cluster them vertically by traversing object relationships

starting from a named or keyed object as a root object.5 We traverse the composite

4.7. Object Clustering 101

5W e do not consider a preloadable object that is defined by the d ef in e -p r e lo a d -c la s s call a
root object because it is supposed to be a subordinate object which happens to be preloaded for
efficiency reasons of loading rather than its relationship with its subordinates.

slots of a named or keyed object depth first, and cluster reachable ones. If we,

while traversing, encounter any preloadable object or a nonpreloadable object that

is already clustered, then we skip it.

It is very possible that there are nonpreloadable objects that are not reachable

from any named or keyed object. We handle them also by clustering them one at a

time in the order of appearance in the model file. We do not try to find an optimal

clustering by figuring out which of the remaining ones should be considered roots

and which subordinates, because there might not be enough information to figure

this out. Even if there is, it would be quite inefficient because it requires multiple

passes over the pholes in the object table.

4.7.2.2 Relationships among Slot Values

Relationships among slot values given an object are horizontal in nature. Atomic

slot values are not of any concern since they are already clustered in the husk given

an object. Composite slot values can be clustered by specifying them using the

following call:
(pos-slot-cluster class-name '((slotl slot3 slot5)

(slot2 slot6 slot8))),

where slotl, slot2, slot3, slot5, slot6, and slot8 are composite slots. Atomic

slots, if included, are ignored. Clustering of an object of this kind results in the

layout of components in the following order: husk, each specified slot clusters, and

the nonspecified composite slot values as a cluster. If the size of an object is small,

say smaller than the I/O buffer size, clustering of this sort is unnecessary and is

skipped.

4.7.2.3 Class and Its Instances

This kind of clustering is horizontal in nature, and mostly handled by the

“preloading” algorithm. An example would be to load the values of a set of pecific

102 4. Persistent Object Store

slots of all the objects of a given class, say to display all the objects of a class. One

of the main goals of preloading is to handle requests like this.

4.8 Merging with Multiple Models

We have already considered the case where one process is accessing one model

file in the object base in section (4.4.1). In this section we treat the case where one

process is accessing multiple model files.

Because the object base in MetaStore is a collection of model files, user programs

interface the object base via model files. Typically, a user program would open a

model file with some preloading done and start accessing objects thus triggering

lazy loading from the opened model file.

There are times when a user will want to edit objects from two or more model

files in the same editing session. This is quite similar to accessing multiple flat

structured object bases because each model file can be regarded as a micro database

as each model file is similar to a flat structured database. This section addresses

the issue of dealing with multiple opened model files by describing two possible

schemes: copying scheme and sharing scheme. We will then describe why we chose

the copying scheme for MetaStore.

4.8.1 Copying Scheme

With two or more model files opened, when an object in one model file is

referenced by another object in another, the referenced object as a network is copied

to the other model file that contains the referrer. However, the actual copying does

not happen until it is necessary, i.e., when one of objects in the network rooted at

the referrer is saved. Thus, a model file is self-contained and objects in a model file

can not be shared by other objects in other model files.

4.8. Merging with Multiple Models 103

With this scheme, a persistent ID in a model file is represented by an integer

unique only to that file, although an implicit file ID is used while a model file is

opened for editing.

There is the notion of a base model and merged models in this scheme. The

first model opened for editing is by default considered the base model. Any other

model opened thereafter is regarded as a merged model. Therefore, there could

be multiple merged models in a modeling session although there is only one base

model at any time. Merged model files are only read accessible, whereas the base

model is read and write accessible.

When a model, say merged, is merged to a base model, say base, we operate

under the following policy:

• Any newly created object will automatically belong to base. In general, there

is no good way of differentiating which of new objects logically belong to base

and which others to merged unless we require users to specify it.

• Any shadow paging of an object which was loaded from either base or merged

will be done to base. Because newly created objects will automatically belong

to base, performing shadow paging of an object which was loaded from merged

to merged may make merged non-self-sufficient.

• As a necessary condition of the commit of a save transaction, all the networks

from merged involved in the transaction will be copied into base.

• The merged model, merged, will stay unmodified at the end of the design

session. The base model, base, will in general change if any new design work

is done. Thus, if the user wishes to keep the base model and yet build more

and save it as a new model file, he or she should copy the base model before

beginning the design work.

104 4. Persistent Object Store

• Merging more than one model file works similarly.

4.8. Merging with Multiple Models 105

The disadvantages of this scheme include: (i) the possibility of excessive copying of

objects from one model file to another during a save transaction, and (ii) the loss

of object or structure sharing thus causing model files to be larger.

A user usually merges multiple model files in an editing session for:

• Viewing, i.e., read accesses only: In this case, this scheme works very well.

This is quite common in CDRS, for example, because a user quite frequently

opens a number of files to render. Rendering a model file does not affect the

model file in the object base.

• Editing, i.e., read and write accesses: In this case, it would be more efficient

to create a new model file (prior to editing any file) which is a merged version

of all the files that are to be edited together as a merged editing. This is

especially desirable if the user intends to save them later into a merged file.

Store supports a routine that merges multiple model files into a new one.

4.8.2 Sharing Scheme

With this scheme, an object in one model file can be shared by any object in

the entire object base. Thus, there is no copying necessary. With this scheme, a

persistent ID is represented by a pair, a file ID unique within the object base and

an object or slot ID unique within a model file. Thus, each persistent ID in a model

file is by itself unique across the entire object base.

This scheme also maintains the notion of a base model and merged models. With

this scheme, however, both the base model and merged models are read and write

accessible. Any loaded object is saved to the same model file where it came from if

it gets modified after being loaded. Any newly created object is saved to the base

model, an arbitrary decision because there is no good way of differentiating which

new objects logically belong to which of the opened model files.

This general scheme supports a clean semantics of merging and sharing. The

disadvantages, however, are:

• Each persistent ID in a model file must be a pair instead of a single integer.

• Each model file is not self contained. Thus, the tools that deal with model

files such as deleting a model file must make sure that there are no dangling

references in a model file.

• This makes the object clustering algorithm within model files unmanageably

complex.

4.8.3 MetaStore’s Choice

In MetaStore, we chose to adopt the “Copying Scheme” because:

• It is simpler to implement than the “Sharing Scheme.”

• It provides simpler semantics for users.

• Garbage collections are not localized in the “Sharing Scheme,” thus more

complicated and more time consuming.

• Clustering of some objects is impossible to do in “Sharing Scheme” because

they exist in different files.

106 4. Persistent Object Store

5
Implementation Results

Theorists need not bother:
The European Common Market already has

a glut of butter, milk, wine, and theorems.
Andy Tanenbaum

One of the main goals of this research was the investigation of metaprogramming

as a language design tool. We first report our experience of using the metaobject

protocol of CLOS in extending it with object persistence in section 5.1. We also

propose some improvements to the metaobject protocol of CLOS.

MetaStore was motivated by and intended to be used by CDRS, which is imple

mented in Lucid CLOS. Therefore, Lucid CLOS was the intended implementation

language for MetaStore. It is however implemented in PCL instead because the

current implementation of Lucid CLOS is not complete enough to support the

persistence granularity at the slot level, whereas PCL is. Because all benchmark

results for MetaStore are done in PCL, we present a performance comparison

between PCL and Lucid CLOS in section 5.2 so that we can project the expected

performance of MetaStore implemented in Lucid CLOS for the benefit of CDRS.

Although object-oriented programming has advantages over conventional pro

gramming, there is extra cost associated with objects. In section 5.3 we present the

cost of objects compared with some traditional data structures such as structures,

arrays, and lists. The comparison is done because: (i) we wanted to use the

most efficient data structures in implementing MetaStore because we were very

performance conscious, and (ii) we were in effect adding extra cost to objects by

adding persistence to them and we wanted to measure the extra cost. This section

can be skipped without losing the continuity in reading.

In section 5.4, we present the cost of the Meta portion of MetaStore. This is

the cost of using the metaobject protocol of CLOS in extending it with object

persistence. We measure the cost of each major feature of M eta in isolation

by adding one feature at a time incrementally to CLOS until we reach the full

MetaStore. Measurements made along the way are presented.

Finally in section 5.5, the cost of the Store portion of MetaStore is presented.

This is the cost of the secondary storage management aspects of MetaStore.

Wherever appropriate, we present an expected performance of MetaStore imple

mented in Lucid CLOS: (i) for the benefit of CDRS, and (ii) because Lucid CLOS

is considered one of the most efficient implementations of CLOS in use today.

5.1 Persistence and Metaobject Protocols

In this section, we describe our experience with the metaobject protocol of CLOS

in extending it to support object persistence. The merits and drawbacks of using

the protocol for persistence extension are described. We then discuss the two most

significant difficulties we faced: maintaining dirty bits and dealing with shared

structures. Finally, we propose possible improvements to the protocol.

5.1.1 Merits

The metaobject protocol of CLOS is sufficient to support language extensions as

long as the extension involves modifying or augmenting the structure or behavior

of objects.

Supporting object persistence as an extension of a language is a major task.

Some extensions are to objects, whereas others are to other data structures. Exten

sions to objects can easily be done via the metaobject protocol, whereas extensions

108 5. Implementation Results

to other data structures require some extra mechanism usually with the help from

user programs or the language implementation level. All the things that we handle

in MetaStore via the metaobject protocol are properties of persistence that can

legitimately be considered object related. They include things that are described

in section 3.8. They are all done with no help from either user programs, a Common

Lisp compiler, or a run-time support system. We summarize some of them here:

• Separating the transient from the persistable.

• Keeping metaobject specific administrative information locally at metaobjects.

• Adding and modifying pholes at the time of creation of and access to persistable

objects.

• Intercepting read and write accesses to objects to support the virtual object

memory.

• Supporting persistence via inheritance.

• Intercepting read accesses to objects to support lazy loading.

• Intercepting write accesses to objects to update dirty bits.

• Adding slot options like :transient to control persistence at the slot level.

• Shadowing some system classes belonging to the metaobject protocol.

• Realizing the notion of a husk.

5.1.2 Drawbacks

In MetaStore, one level of indirection on slot accesses for each persistable com

posite slot of a persistable object is necessary to support persistence at the slot

level. Each indirection is implemented by a phole sitting between the object and a

5.1. Persistence and Metaobject Protocols 109

composite slot value. The value of a composite slot is stored in the phole associated

with the slot. Thus, a slot-value call to a persistable object for a composite slot

value in MetaStore returns the value in a phole rather than the phole associated

with the slot. In implementing MetaStore, however, it is often necessary to get a

phole rather than the user value in the phole.

This situation requires two different semantics for the slot-value method de

pending on who calls it and for what purpose. There are several ways of resolving

this difficulty:

• Use a global variable, say *return-phole-p*, that MetaStore maintains. De

pending on the value of this variable, the body of the : around method defined

for slot-value-using-class, which is the workhorse routine for slot-value,

is skipped. Therefore, every time a phole is needed, a caller would set this

variable to t, call slot-value to get the phole associated with the slot, and

reset the variable to nil on return. This approach is a possible solution since

no user program would ever need a phole as the value of a slot-value call.

Only some routines in MetaStore need pholes frequently. This solution was

not chosen because each slot access is slowed down and the efficiency of slot

accesses is critical for efficiently using objects.

• Add an extra keyword, say :return-phole-p, to the metaobject protocol

interface routine slot-value-using-class, and conditionally return a phole

or the value in a phole depending on the value of this keyword. This was not

chosen for the similar reason as the first possibility. Also, adding an extra

keyword argument is not allowed in the protocol.

• Isolate the body of the method slot-value-using-class and give a new name

like phole-slot-value-using-class. This then returns a phole, whereas

regular slot-value-using-class returns the value in a phole.

110 5. Implementation Results

In MetaStore, the third possibility was chosen even though it violates the protocol

because it was the most efficient one. Because MetaStore uses PCL [7], whose

source code is available, this was easy to do. If we were more concerned about

not violating the protocol than about the efficiency, we would have chosen the first

choice.

(setf slot-value), used to modify a slot value, is the dual of slot-value,

posing the exact same problem. A similar implementation decision was made for

(setf slot-value).

There were two most significant difficulties we faced: maintaining dirty bits and

dealing with shared structures, which we describe in the next section.

5.1.3 Abstraction Mismatch?

The metaobject protocol of CLOS is designed to support language extensions as

long as the extensions are confined to the structure or behavior of objects. However,

as soon as we try to augment the language with a feature that is not considered a

property of objects, the metaobject protocol level is no longer sufficient.

Supporting object persistence requires some changes that are considered object-

oriented as well as others that are considered base language implementation related.

All the features of MetaStore that are object related are well supported by the

metaobject protocol as we saw in section 5.1.1. The drawbacks discussed in section

5.1.2 are object-oriented, and it seems an oversight in the current design of the

protocol, that can easily be fixed.

However, there are issues that must be handled in conjunction with persistence

that are closely related to the low level base language implementation. They

include:1

• Maintaining the dirty bits used to support incremental saves.

^ e e sections 3.10 and 3.11 for details.

5.1. Persistence and Metaobject Protocols 111

• Preserving language semantics on structure sharing with persistence.

Tracking dirty bits and dealing with structure sharing seem to belong to the

Common Lisp implementation level, not to the metalevel of CLOS. Dealing with

these issues at the metalevel is difficult because of an abstraction mismatch. The

Common Lisp Object System can be viewed as having five levels in implementation.

They are:

• CLOS objects,

• Common Lisp,

• garbage collection,

• data types, and

• memory

with CLOS objects being the highest and memory the lowest in the abstraction

spectrum. Dealing with dirty bits and structure sharing can best be done at levels

such as “Common Lisp" and/or “garbage collection” in the list above. In MetaStore

we tried to solve these issues at the “CLOS objects” level, so it is not surprising

that it was not natural. We had to leave the metaobject protocol at times to deal

with these issues. We had to devise extra mechanisms that required some help from

user programs and the Common Lisp compiler.

5.1.4 Proposed Improvements to the Metaobject Protocol

There are improvements that can be made to the metaobject protocol for the

short term. There are also improvements that could be made to the implementation

techniques of Common Lisp for the long term.

5.1.4.1 Short-Term

Based on the experience of adding object persistence to CLOS in MetaStore,

only a few minor improvements are proposed here to the existing protocol. They

112 5. Implementation Results

are related to slot accessing as described in section 5.1.2. We propose that the

protocol support a mechanism for one level of indirection on slot accesses. One

possibility would be to provide two more routines as follows:

• slot-value-using-class-direct:

This routine is identical to slot-value-using-class in all respects. We some

times want to use the default behavior of slot-value-using-class and the

changed behavior at other times. The changed behavior is usually obtained by

specializing the default method with a :before, : after, or : around method.

With the current protocol, once we modify the behavior of a method this

way, we cannot use the default behavior any more although we must use it on

occasion.

• (setf slot-value-using-class-direct):

This is the dual of slot-value-using-class-direct for write accesses to

slots.

In general, this problem can be directed toward the semantics of object-oriented

programming. When a method is augmented, say, by an : around method, there

is no easy way to get the default behavior any more. We may want to extend

the semantics of method combinations as follows. Even after a specialization

method, e.g., an : around method, is defined in addition to a primary method,

we are given the option of executing only the primary method without executing

the specialization method. This is not an easy extension to support in general since

it requires an elaborate control over all the methods: primary methods, : before

methods, : after methods, and : around methods. Although it may be considered

overkill, the copy-as operation of Jigsaw [9] would solve this problem.

5.1. Persistence and Metaobject Protocols 113

5.1.4.2 Long-Term

As discussed in section 5.1.3. a seamless extension to CLOS of object persistence

requires support from the base language implementation level. Judging from our

experience with MetaStore, the metaobject protocol of CLOS seems well designed to

support extensions to CLOS as long as the extension is inherently object-oriented.

To stay with the spirit of the metaobject protocol of CLOS to “open’’ up the

language, it would be nice to push the metaobject protocol idea further down to the

level of base language implementation. If we can support the metaobject protocol

down at the Common Lisp data type level or at the garbage collection level,2 the

problems that we experienced in MetaStore (dirty bits and shared structures) could

be easily solved. With this change, we would be able to enjoy the advantages of

both “the base level persistence scheme*1 and “the metalevel persistence scheme’1

while encountering fewer of the disadvantages described in section 2.4.

5.2 PCL vs. Lucid CLOS
PCL is designed to support development,

not delivery of CLOS programs.
Gregor Kiczales and Luis Rodriguez

Because MetaStore was motivated by and intended to be used by CDRS, we had

planned to implement it in Lucid CLOS [30]. However, it was instead implemented

in PCL [7,23] because the Lucid CLOS implementation was not complete enough to

the specification of [23] to implement MetaStore. Specifically, the slot level protocol,

which is necessary for implementing the slot level granularity of persistence, was

not available with Lucid CLOS at the time of the MetaStore implementation.

There are some major differences between Lucid CLOS and PCL in the object

performance. Because MetaStore is implemented in PCL and the measurements

gathered are based on this implementation, we present the difference between PCL

2Maybe, we would then call it metadata protocol or metatype protocol.

114 5. Implementation Results

and Lucid CLOS so that we can project the expected performance of MetaStore

ported to more complete implementation of Lucid CLOS. The current CDRS is

implemented in Lucid Common Lisp with Lucid CLOS. Therefore, until MetaStore

is fully ported to Lucid CLOS and CDRS is fully ported to MetaStore, we will

not have “real” measurements for CDRS. Each measurement in this dissertation is

based on compiled code.

Because the most important and critical aspects of an object system for a user

program in terms of performance are creating objects, read and write accesses

to objects, method dispatches, and method specializations, we compare PCL and

Lucid CLOS using these dimensions. Objects used in this section are all transient

objects. That is, MetaStore is not in the picture at all with the measurements in

this section.

5.2.1 Creation

Two identical programs were written, one in PCL and the other in Lucid CLOS.

In these programs, a class of 30 slots was used, and 1,000 objects were created. The

results of creating these objects were as follows:

5.2. PCL vs. Lucid CLOS 115

Time Bytes Consed
PCL
LucidCLOS

3.40 sec
0.06

256.008
152.008

Ratio 56.67 1.68

PCL runs over 50 times slower than Lucid CLOS does.3 PCL uses almost 70% more

space than does Lucid CLOS. Similar differences are seen with classes of different

sizes. Classes with subclasses also shows similar differences.

5.2.2 Read Access

The context in which a read access to a slot is made makes a significant difference

in both PCL and Lucid CLOS. The magnitude of difference in both implementations

3A comment by one of the local Lispers was “Holy sh*t!” on his first reading of these numbers.

is similar. Five different contexts were explored with read accesses on an object.

They included: (i) reading a slot value of the “self" object within a method, (ii)

reading a slot value of the “self" object within a method, but with the “self” object

wrapped in a let binding, (iii) reading a slot value of an object other than the

“self' object within a method, (iv-1) reading the value of the first slot of an object

outside a method, e.g., within a function, and finally (iv-20) same as the case (iv-1)

except reading the 20th slot.

We only show time comparisons since the space used in all cases is negligible.

Using the two programs described in section 5.2.1, 100,000 accesses were made to

an object with 30 slots in each benchmark run.

116 5. Implementation Results

(i) (ii) (iii) (iv-1) (iv-20)
PCL
LucidCLOS

0.13 sec
0.13

13.67
4.67

13.44
4.70

21.61
2.24

13.40
4.65

Ratio 1.00 2.92 2.85 9.64 2.88

Accessing different slots of a given object did not make a noticeable difference

except in the case where a slot was accessed outside a method, e.g., in a function,

as shown in cases (iv-1) and (iv-20).

In (i), there was no difference between PCL and Lucid CLOS. In (ii), (iii), (iv-1),

and (iv-20), PCL was from approximately 3 to 10 times slower than Lucid CLOS

was.

We now compare read accesses in different contexts in both PCL and Lucid

CLOS.

P C L Ratio LucidCLOS Ratio

(i)
(ii)
(iii)

(iv-1)
(iv-20)

0.13 sec
13.67
13.44
21.61
13.40

1.00
105.15
103.38
166.23
103.07

0.13 sec
4.67
4.70
2.24
4.65

1.00
35.92
36.15
17.23
35.77

The difference between (i) and the rest is caused by the special optimization done

to case (i). When an access is not made to one of the slots of the “self” object

directly, e.g., without intermediary l e t binding, within a method, the access speed

gets drastically slower because of the loss of the optimization. The loss of the

optimization makes PCL over 100 times slower, whereas the impact in Lucid CLOS

is about 35 times slower.

5.2.3 Write Access

The context in which a write access to a slot is made makes a significant difference

in both PCL and Lucid CLOS, as was the case with read accesses. The same five

cases, (i), (ii), (iii), (iv-1), and (iv-20), were repeated for write accesses. 100,000

accesses were made to an object with 30 slots in each benchmark run and the time

recorded.

5.2. PCL vs. Lucid CLOS 117

(i) (ii) (iii) (iv-1) (iv-20)
PCL
LucidCLOS

0.11 sec
0.12

14.22 sec
3.90

14.49 sec
3.92

22.76 sec
1.50

14.28 sec
3.90

Ratio 0.92 3.64 3.69 15.17 3.66

As was the case with read accesses, accessing different slots of a given object did not

make a noticeable difference except in the case where a slot was accessed outside

a method, e.g., in a function, as shown in cases (iv-1) and (iv-20). Lucid CLOS

seems to optimize specially on accesses to the first slot of a class.

In the optimized case, there was no difference between PCL and Lucid CLOS.

When the optimization was lost, Lucid CLOS was approximately four times faster

than PCL was.

Write accesses are highly optimized only for one case where a slot of the “self” is

updated within a method. We see a bigger difference in PCL than in Lucid CLOS.

P C L Ratio LucidCLOS Ratio

(i)
(ii)
(iii)

(iv-1)
(iv-20)

0.11 sec
14.22
14.49
22.76
14.28

1.00
129.27
131.73
206.91
129.82

0.12 sec
3.90
3.92
1.50
3.90

1.00
32.50
32.67
12.50
32.50

5.2.4 Method Dispatch

Because of the dynamic binding (section 2.1.2) of generic functions to methods,

the cost of dynamic binding implemented as method dispatch is a critical aspect

to consider in an object system. To measure the difference in efficiency of method

dispatches between PCL and Lucid CLOS implementations, the following exper

iment was done. Fifty different methods, one for each of 50 classes of six slots,

were defined with one generic function, f oo. When f oo is called with an object

of one of the 50 classes, the dispatch of generic function f oo happens to one of 50

methods depending on the class used. Each method performs a simple task, namely

incrementing its first slot value by 1. Then, a driver function is defined, and called

three times: (i) with object-0, an instance of the first class defined, (ii) with

object-25, an instance of the 26th class, and (iii) with object-49, an instance of

the 50th class. The driver function calls the generic function foo 1,000,000 times

with one of these objects as its argument and the resulting time is shown below.

118 5. Implementation Results

object-0 object-25 object-4 9
PCL
LucidCLOS

6.00 sec
5.98

7.31 sec
7.37

7.30 sec
7.41

Ratio 1.00 1.00 1.01

Both PCL and Lucid CLOS show virtually equal performance. In both PCL and

Lucid CLOS, the binding of generic functions to methods seems better optimized

for the objects of the first class defined.

5.2.5 Method Specialization

When methods such as make-instance, slot-value-using-class, and (setf

slot-value-using-class) in the metaobject protocol are specialized by a : before,

rafter, or : around method, PCL slows down substantially due to the loss of

optimizations done to these methods; Lucid CLOS does not show a noticeable

difference except in creating objects. To measure the differences, an : around

method is defined with null body for each of these methods. The : around methods

do nothing but calling call-next-method. The effects of : around methods are

presented here.

5.2.5.1 Creation

All three methods: make-instance, slot-value-using-class, and (setf

slot-value-using-class), in CLOS are used in creating objects. One thousand

objects were created with and without : around methods for these three methods

with the following results:

5.2. PCL vs. Lucid CLOS 119

w /ou t -.around Methods w / '.around Methods Ratio

PCL 3.40 sec 4.32 sec 1.27
LucidCLOS 0.06 sec 2.86 sec 47.67
Ratio 56.67 1.27

Without these : around methods, PCL runs almost 60 times slower than Lucid

CLOS does. With them, there is no noticeable difference between PCL and Lucid

CLOS.

The : around methods did not make much difference in creating objects in PCL.

It is because there is not much optimization done in creating objects in PCL in

the first place. For Lucid CLOS, the cost of these : around methods was almost 50

times of slowdown.

5.2.5.2 Read Access

One hundred thousand read accesses were made to a slot of an object with

and without an : around method for slot-value-using-class with the following

results:

w /ou t :around Methods w / :around Methods Ratio

PCL 0.13 sec 34.86 sec 286.15
LucidCLOS 0.13 sec 0.14 sec 1.07
Ratio 1.00 248.99

Without the : around method, PCL and Lucid CLOS ran at about the same speed.

With them, however, PCL ran about 250 times slower than Lucid CLOS did.

For PCL, the : around method made read accesses to a slot about 270 times

slower. For Lucid CLOS, however, the overhead of the : around method was almost

nonexistent.

5.2.5.3 Write Access

One hundred thousand write accesses were made to a slot of an object with

and without an : around method for (setf slot-value-using-class) with the

following results:

120 5. Implementation Results

w /out :around Methods w / :around Methods Ratio
PCL 0.11 sec 35.90 sec 326.36
LucidCLOS 0.12 sec 0.12 sec 1.00
Ratio 1.09 299.17

Without the : around method, PCL and Lucid CLOS ran at a similar speed. With

them, however, PCL ran about 300 times slower than Lucid CLOS did.

For PCL, the : around method made write accesses to a slot over 300 times

slower. For Lucid CLOS, however, the : around method made no difference.

5.2.6 Remarks

Object creation, read accesses, write accesses, and method specialization are all

very critical aspects for MetaStore to be efficient. In implementing MetaStore, we

used many : around methods: object creation, read accesses, and write accesses

were all augmented by : around methods. In PCL, .-around methods slowed down

two of these three critical aspects substantially: almost 300 times for read accesses

and almost 350 times for write accesses. In Lucid CLOS, on the other hand, was

not affected at all by : around methods except on object creation: almost 50 times

slowdown.

Because we are being severely penalized by PCL in the current implementation

of MetaStore due to the heavy use of : around methods, we will take this into

consideration in predicting the performance of MetaStore that will be running on

Lucid CLOS.

5.3 Cost of Objects

The advantages of using object-oriented programming in software engineering are

well known, but these advantages come with some extra costs. In this section, these

costs are analyzed. This analysis is not critical to the rest of the dissertation. It is

done as a reference information and can be skipped without losing the continuity.

We examine the following aspects of an object-oriented programming language,

CLOS: object creation, read and write accesses to objects, and method calls.

Data structures that are most commonly used with programming in Common

Lisp are arrays, structures, and lists. Thus, objects are compared against these data

structures for the efficiency of creation of and accesses to them. The comparison

was done because: (i) W7e wanted to use the most efficient data structures in

implementing MetaStore since we were very performance conscious, and (ii) we were

in effect adding extra cost to objects by adding persistence to them and we wanted

to measure the extra cost. Because Lucid CLOS is the target implementation for

MetaStore in CDRS, Lucid CLOS is used for these measurements. The differences

we will see in the following subsections would be larger if PCL were used. The

differences in the PCL case could be estimated based on the comparisons that was

just done in the previous section.

5.3.1 Creation

A class of 30 slots, a structure created by def struct with 30 slots, an array of

30 elements, and a list of 30 elements were created 100,000 times. A simple value,

5.3. Cost of Objects 121

an integer, was used as the value of each slot of an object, each slot of a structure,

each element of an array, and each element of a list. The results were as follows:

122 5. Implementation Results

Time Ratio Bytes Consed Ratio
Object
Structure
Array
List

7.20 sec
2.00
2.24
4.44

1.00
3.60
3.21
1.62

19.200,288
13.600.008
13.600.008
24.800.008

1.00
1.41
1.41
0.77

Creating objects is from approximately two to four times slower than creating other

data structures. The fact that structures and arrays take about the same amount

of time and use the same amount of memory for creation suggests that structures

in Lucid Common Lisp are implemented as arrays.

Class hierarchy does not seem to add a noticeable difference. For example, for

three classes A, B, and C, where A has 30 slots with no superclass, B has 15 slots with

no superclass, and C has 15 slots and has B as its superclass, creating instances of

A and creating instances of C are not noticeably different in both time and space.

When different sizes of objects, structures, arrays, and lists were used, the

relative differences between them were similar to the measurements shown in this

section.

5.3.2 Read Access

Because the context in which a read access to a slot of an object is made makes

a significant difference, we consider two cases for read accesses to an object: (i)

reading a slot value of the “self” object within a method, and (ii) reading a slot

value of an object outside of a method, e.g., within a function. These two cases

are compared against the cases with structures, arrays, and lists. In each case, the

20th element out of 30 was accessed 1,000,000 times. Memory consumptions on

read accesses to these entities were negligible, thus not included.

5.3. Cost of Objects 1*23

Time Ratio
Object (i)
Object (ii)
Structure
Array
List

1.41 sec
40.30

0.20
4.04
0.22

1.00
28.58

0.14
2.87
0.16

Read accesses to a slot of an object within a method, case (i), was 7.04 times slower

than read accesses to a slot of a structure, 2.87 times faster than read accesses to

an element of an array, and 6.41 times slower than read accesses to an element of

a list.

Read accesses to a slot of an object outside a method, case (ii), however was

201.50 times slower than read accesses to a slot of a structure, 9.98 times slower

than read accesses to an element of an array, and 183.18 times slower than read

accesses to an element of a list.

Lucid Common Lisp compiler seems to have done a better job in optimizing list

read accesses than array read accesses.

5.3.3 Write Access

Because the context in which a write access to a slot of an object is made makes

a significant difference, here again we consider two cases on write accesses to an

object: (i) modifying a slot value of the “self” object within a method, and (ii)

modifying a slot value of an object outside of a method, e.g., within a function.

These two cases were compared against the cases with structures, arrays, and lists.

In each case, the 20th element out of 30 was modified 1,000,000 times. Memory

consumptions on write accesses to these entities were negligible, thus not included.

Time Ratio
Object (i)
Object (ii)
Structure
Array
List

1.18 sec
39.74

0.43
4.72

22.28

1.00
33.68

0.36
4.00

18.88

Write accesses to a slot of an object within a method, case (i). was 2.74 times slower

than write accesses to a slot of a structure, 4.00 times faster than write accesses to

an element of an array, and 18.88 times faster than write accesses to an element of

a list.

Write accesses to a slot of an object outside a method, case (ii), however, was

92.41 times slower than write accesses to a slot of a structure, 8.42 times slower

than write accesses to an element of an array, and 1.78 times slower than write

accesses to an element of a list.

5.3.4 Functions vs. Methods

To measure the difference between a function call and a method call, the fol

lowing experiment was done. A function, f oo, was defined to increment an integer

variable by 1. Because a method call requires at least one argument, foo is also

defined with one argument. For the method case, 50 different methods, one for each

of 50 classes of six slots, were defined with one generic function, bar. Each method

again increments an integer variable, not a slot but a global variable as was done

in the function case, by 1. Then, two driver functions, one for the function and the

other for the method, were defined. Each driver function calls the function foo or

the method bar 1,000,000 times and the resulting time is shown below. In the case

of method calls, three different cases are sampled: (i) with object-0, an instance

of the first class defined, (ii) with object-25, an instance of the 26th class, and

(iii) with object-49, an instance of the 50th class.

124 5. Implementation Results

Time Ratio
Function calls
Method calls: object-0

object-25
object-49

1.98 sec
6.00
7.31
7.30

1.00
3.03
3.69
3.69

The majority of the time spent on method calls are assumed to be spent on

dispatching of the generic function call to appropriate methods. Although a method

call to an object of the first class defined seems to be a little faster than the other

cases, method calls in general are almost four times slower than function calls.

5.4. Cost of Meta 125

5.3.5 Remarks

In general using objects is more expensive than other data structures. This was

the case with all categories that we considered: creating objects, accessing objects,

and calling generic functions.

The cost was especially significant when objects are not read or write accessed

as the “self” object within a method. This suggests that some cases are optimized.

Based on these measurements, a programmer must decide on what data struc

tures to use depending on how often and in what context they are accessed. As the

rule of thumb, we use objects only when the fundamental features of object-oriented

programming, e.g., inheritance and dynamic binding, are either necessary or very

useful. Otherwise, structures, arrays, or lists are used.

In implementing MetaStore, objects were used according to this rule of thumb.

Data structures and algorithms were carefully chosen in implementing MetaStore

because efficiency was the foremost concern.

5.4 Cost o f M e t a

how long shalt it be then?
II Samuel 2: 26

There is certain overhead added to normal object creations and accesses by the

extra mechanism added to support object persistence in CLOS via the metaobject

protocol in MetaStore. In this section, we focus on the cost of dealing with objects

in virtual memory such as creating objects, reading values of slots in an object, and

changing the values of slots in an object. The cost associated with dealing with a

secondary storage is analyzed in section 5.5.

The plan is to start with a very minimal subset of MetaStore and add one feature

at a time with measurements made along the way. Thus, at each new stage, the

cumulative cost of MetaStore is obtained. It would be ideal to isolate a feature,

and measure the cost of it alone. However, in most cases, it is not feasible to isolate

a feature because in most cases features are interdependent. In general, we will

measure the cumulative cost by adding one feature at a time. Wherever feasible,

an isolated cost for a feature is presented.

Our analysis of MetaStore is divided into six stages, starting with the simplest

version of MetaStore and ending with the most comprehensive version. Each stage

is designed to measure the cost of the following six features:

1. The cost of a metaobject class. To measure this, we strip down the implemen

tation of MetaStore only to include the metaclass, persistent-metaclass

that inherits the system defined standard-cl ass, and a few extra things such

as the inserted persistent root class that is to be inherited by a persistable

user class.

2. The cost of : around methods used in MetaStore as specializations to methods

in the metaobject protocol. The : around methods are defined as null routines

except for calling ca ll-n ext-m eth od .

3. The cost of supporting persistence at the slot level. There is an extra mecha

nism added to the slot metaobject class to implement the grain size of persis

tence at the slot level, and the overhead of supporting this extra mechanism

is measured.

4. The cost of MetaStore kernel. This is the basic mechanism of MetaStore that

maintains pholes, the object table, keeping track of dirty bits, etc. At this

level, shared structures and virtual object memory are not included.

126 5. Implementation Results

5. The cost of handling shared structure. This stage measures the cost of sup
porting shared structures as described in section 3.11.3. Because a shared
structure is perceived to be an expensive feature to support in a persistent
object system and yet is not a very im portant feature to be supported in
practice,4 an isolated cost is measured so that a decision can be made as to
whether the support of shared structures should or shouldn’t be omitted in a
persistent object system such as MetaStore.

6. The cost of the virtual object memory. This stage measures the cost of
supporting the virtual object memory as described in section 3.12. The virtual
object memory idea deals with the virtual memory of a program being filled
up, thus affecting the system performance. Because it appears to be expensive
to support in a persistent object system, an isolated cost of this feature is
measured.

In the following subsections, each of these is added one at a time in order using
the PCL implementation of MetaStore, and measurements are made. Where ap
propriate, calculated, expected performance of MetaStore for Lucid CLOS is also
presented. In each subsection, the same dimensions of an object system that have
been used are tried again for measurements: creating objects, read accesses to
objects, and write accesses to objects.

The following experiment was done for each of these six features: one in each
subsection below. A persistable class of 30 slots was defined. For creation, 1,0005
objects were created while the time and space consumptions were measured. For

4Shared structures have not been supported in object persistence in CDRS thus far since there
have been only a few isolated cases in use. They have been dealt with by application programs.

5Creating 1,000 objects at some levels does not take much time. However, it takes much more
at different levels. Although a large number like 100,000 or 1,000,000 could have been used, 1,000
is chosen to reduce the waiting time during benchmark runs. Using the same number at each
level is critical for accurate comparisons.

5.4. Cost of Meta 127

read and write accesses, 100,000 accesses were made to an object and the time was
measured. For read and write accesses, the measurements on the space consumption
were not included since they were all negligibly small. Although there were sizable
differences depending on the context in which a read or a write access was made,
only one case, reading or updating the value of a slot of the “self” object within a
method, was measured here because:

• This is the context in which a read or a write access is most often made.

• We want to simplify the comparisons between different levels of MetaStore.

• From the differences we see in this one case, we can expect to see similar
differences in other cases except in one case—the case where an access is made
to the first slot in a function (case (iv-1) in section 5.2.2). Although case (i) in
section 5.2.2 shows a huge difference compared with other cases, this analysis
is valid because the huge difference is wiped out by the : around methods in
MetaStore, bringing the difference to a negligible magnitude.

5.4.1 Cost of M etaobject Class

The persistent metaobject class per si stent-met acl ass was created in imple
menting MetaStore as a subclass of standard-cl ass, a system provided metaobject
class. The persistent root class persistent-root-class, whose metaobject class is
persistent-metaclass, is also created to handle the persistence of user classes that
inherit persistent-root-class. Thus, persistent-root-class is the workhorse
for all the user defined persistable classes. In this section, we measure the cost of
using persistent-metaclass and that of persistent-root-class being inherited
by user classes. To measure this cost, a stripped down version of MetaStore
is created which includes only persistent-metaclass, persistent-root-class,

128 5. Implementation Results

and a few extra routines that establish the integration of these classes to the
underlying CLOS implementation.

5.4. Cost of Meta 129

5.4.1.1 Creation
The measurements were made while creating 1,000 objects to be compared

against those obtained from using a transient class of the same size.
Time Bytes Consed

Transient
Persistent Metaclass

3.40 sec
3.21

256.008
256.008

Ratio 1.05 1.00
There is no noticeable difference in either time or space. The minor difference in
time measurements is attributed to the margin of errors rather than the difference
caused by the extra mechanism being measured. There is no reason to believe that
there would be any difference with Lucid CLOS.

5.4.1.2 Read A ccess
The measurements were made while read accessing an object 100,000 times to

be compared against those obtained from using a transient class of the same size.
Time

Transient
Persistent Metaclass

0.13 sec
0.13

Ratio 1.00
There is no effect of a metaobject class on the read access of a persistable object.

5.4 .1 .3 W rite A ccess
The measurements were made while write accessing an object 100,000 times to

be compared against those obtained from using a transient class of the same size.
Time

Transient
Persistent Metaclass

0.11 sec
0.11

Ratio 1.00
There is no effect of a metaobject class on the write access of a persistable object.

5.4.1.4 R em arks on M etaobject Class

There is no noticeable overhead at this level. This is expected because all we
are doing at this level is introducing a few extra subclasses.

5.4.2 Cost of M ethod Specialization via ;around M ethods

In implementing MetaStore, a number of : around methods are defined, the fol
lowing three being the most notable: make-instance, slot-value-using-class,
and (setf slot-value-using-class) to create objects, to read access an object,
and to write access an object, respectively. To measure the cost of : around
methods, an : around method was defined for each of these three methods, whose
body does nothing but calling call-next-method. These : around methods were
added on top of what was done in the previous subsection (5.4.1).

5.4.2.1 Creation

The measurements were made while creating 1,000 objects:

130 5. Implementation Results

Time B ytes Consed
Before MetaStore
After :around methods

3.40 sec
4.32

256.008
368.008

Ratio 1.27 1.43

Creating objects after : around methods were added to those three methods men
tioned above takes about 1.27 times more than creating objects without MetaStore
in PCL.

Since Lucid CLOS was measured to be about 1.27 times faster than PCL when
: around methods were used as we saw in section 5.2.5, MetaStore implemented in
Lucid CLOS would have shown at most 3.40 (4.32 / 1.27 = 3.40) instead of 4.32,
thus would be about the same as the native speed (3.40) of PCL.

5.4.2.2 Read A ccess

The measurements were made while read accessing an object 100,000 times. A
slot of the “self” object within a method was accessed that many times.

5.4. Cost of Meta 131

Time
Before MetaStore
After :around Methods

0.13 sec
34.86

Ratio 268.15
Dummy : around methods made read accesses almost 300 times slower than the
normal transient read accesses. : around methods made the optimization done on
read slot accesses disappear.

5.4 .2 .3 W rite A ccess

The measurements were made while write accessing an object 100,000 times. A
slot of the “self” object within a method was accessed that many times.

Time
Before MetaStore
After :around Methods

0.11 sec
35.90

Ratio 326.36
Dummy .-around methods made write accesses over 300 times slower than the
normal transient write accesses. : around methods made the optimization done on
write slot accesses disappear.

5.4 .2 .4 Rem arks on M ethod Specialization

Object creations were not affected much (only about 30%) by the : around
methods, whereas read and write accesses were slowed down by about 300 times.
This is due primarily to the loss of optimization when : around methods are added
because the body of these : around methods are kept empty except for calling
(call-next-method).

5.4.3 Cost of Slot Level Persistence

To support persistence at the slot level as well as to let users be able to selectively
make slots persistable, the slot metaobjects are augmented in MetaStore. The cost
of MetaStore is measured after this extra mechanism is added on top of MetaStore
measured in the previous subsection (5.4.2).

132 5. Implementation Results

5.4.3.1 Creation

The measurements were made while creating 1,000 objects:
Time B ytes Consed

Before MetaStore 3.40 sec 256,008
After :around Methods 4.32 368,008
After Slot Level Persistence 4.67 368,008
Ratio wrt up to :around Methods 1.08 1.00
Ratio wrt Transient 1.37 1.43

The slot level persistence made creating objects about 1.37 (4.67 / 3.40 = 1.37)
times slower than creating objects without MetaStore in PCL. W ith respect to
MetaStore up to : around methods, it added about 8% overhead.

5.4 .3 .2 Read A ccess

The measurements were made while read accessing an object 100,000 times. A
slot of the “self’’ object within a method was accessed that many times.

Time
Before MetaStore
After :around Methods
After Slot Level Persistence

0.13 sec
34.86
38.41

Ratio wrt up to :around Methods
Ratio wrt Transient

1.10
295.46

MetaStore up to this level made read accesses about 300 times slower than the
normal transient read accesses. W ith respect to MetaStore up to : around methods,
it added about 10% overhead.

5.4 .3 .3 W rite A ccess

The measurements were made while write accessing an object 100,000 times. A
slot of the “self” object within a method was accessed that many times.

5.4. Cost of Meta 133

Time
Before MetaStore
After :around Methods
After Slot Level Persistence

0.11 sec
35.90
39.00

Ratio wrt up to :around Methods
Ratio wrt Transient

1.09
354.55

MetaStore up to this level made write accesses over 350 times slower than the normal
transient write accesses. W ith respect to MetaStore up to : around methods, it
added about 9% overhead.

5.4.3.4 Rem arks on Slot Level Persistence

Slot level persistence added about 10% overhead in all three aspects with respect
to the previous level, up to : around methods. The main source of the overhead is
the one level of indirection added to all persistable composite slots.

5.4.4 Cost of M etaStore K ernel

This is the cost of the basic mechanism of MetaStore that allows the minimum
functionality of MetaStore: being able to define persistable classes, being able to
selectively declare slots to be persistable, being able to perform incremental saves,
being able to load on demand, etc. Therefore, we maintain object identities, pholes,
the object table, dirty bits, model identities for interfacing the object base, etc. at
this level. Features measured up to the previous subsection (5.4.3) are of course
all included. They include the cost of metaobject classes, : around methods, and
slot level persistence. At this level, shared structures and virtual object memory
are not included because they will be treated as separate features on top of the
MetaStore kernel in the coming sections.

5.4.4.1 Creation

The measurements were made while creating 1,000 objects.

134 5. Implementation Results

Time Bytes Consed
Before MetaStore
After Slot Level Persistence
MetaStore Kernel

3.40 sec
4.67

56.35

256.008
368.008

6,152,008
Ratio wrt Slot Level Persistence
Ratio wrt Transient

12.07
16.57

16.72
24.04

The MetaStore kernel made creating objects about 16 times slower than creating
objects without MetaStore. It ran about 12 times slower than MetaStore with up
to slot level persistence.

Creating objects in the MetaStore kernel used about 24 times more space than
creating objects without MetaStore, and about 17 times more than MetaStore with
up to slot level persistence.

5.4 .4 .2 Read A ccess

The measurements were made while read accessing an object 100,000 times. A
slot of the “self” object within a method was accessed that many times.

Time
Before MetaStore
After Slot Level Persistence
MetaStore Kernel

0.13 sec
38.41
35.62

Ratio wrt up to Slot Level Persistence
Ratio wrt Transient

0.93
274.00

Read accesses in the MetaStore kernel was about 270 times slower than the normal
transient read accesses. W ith respect to MetaStore with up to slot level persistence,
it actually ran faster by about 7%. This unexpected result is attributed to the
margin of errors.

5.4 .4 .3 W rite A ccess
The measurements were made while write accessing an object 100,000 times. A

slot of the “self” object within a method was accessed that many times.

5.4. Cost of Meta 135

Time
Before MetaStore
After Slot Level Persistence
MetaStore Kernel

0.11 sec
39.00

254.70
Ratio wrt up to Slot Level Persistence
Ratio wrt Transient

6.53
2.315.45

Write accesses in the MetaStore kernel was over 2,000 times slower than the normal
transient write accesses. W ith respect to MetaStore with up to slot level persistence,
it ran about 6 times slower. The slowdown by about six times is attributed to the
case analysis on the value of a slot before and after the update because a phole
is either added to or removed from a composite slot depending on what kind of a
value is changed to what other kind of a value.

5.4 .4 .4 R em arks on M etaStore K ernel
Read accesses in the MetaStore kernel did not add any additional cost as ex

pected because there is no extra work added to the read mechanism at the kernel
level. The main cost added on object creation is due to the addition of pholes to
persistable composite slots and the case analysis of slot values that are being used
as the initial values. Write accesses added substantial extra cost. Most of it is
caused by (i) the : around methods and (ii) the case analysis on the slot values in
order to add or remove a phole if necessary.

If we were to eliminate the overhead caused by : around methods, object creation
and write accesses would be about 13 and 7 times slower respectively than the
transient case; read accesses would be about the same as the transient case.

If MetaStore were to run on Lucid CLOS, object creation and write accesses
would be about 4 and 7 times slower respectively than the transient case; read
accesses would be about the same as the transient case.

5.4.5 Cost o f Shared Structures
On top of the MetaStore kernel, supporting the persistence of shared structures

as designed in section 3.11.3 was added, and the measurements were made in
creating objects, reading slot values, and writing slot values to see the isolated
cost of handling shared structures.

5.4.5.1 Creation
The measurements were made while creating 1,000 objects:

136 5. Implementation Results

Time B ytes Consed
MetaStore Kernel
W ith Shared Structures

56.35 sec
56.22

6.152.008
6.224.008

Ratio 1.00 1.01
In creating objects, there was no noticeable difference added by handling structure
sharing. The fact that it took less time with structure sharing handled above is
considered the margin of error in benchmark runs. The main cost of dealing with
shared structures in MetaStore comes from two sources: (i) making pholes lazily
and (ii) looking up an “eq-test” hash table. The cost of creating pholes lazily was
negligible compared with the cost of the MetaStore kernel due to the optimization
done as follows. A resource manager was used to minimize the effect of having to
create pholes on the fly. A large number (100,000) of pholes was made in advance
and put into a pool. Each time one is needed, one is checked out of the pool. When
the pool is empty, it is refilled with a number smaller (10,000) than the original size.
The cost of creating pholes became negligible with the pool. The cost of looking up
a hash table was again negligible compared with the cost of the MetaStore kernel.
For an “e^-test” hash table, looking up each entry once of a table with 100,000
entries takes only 0.02 seconds although initializing a hash table of the same size
takes about 66.77 seconds as shown in the table below.

Time B ytes Consed
Initializing a Hash Table
Looking up a Hash Table

66.77 sec
0.02

62,764,728
352

The time measured for the cost of creating objects above did not include adding
entries to the hash table. It only included the time to look one up as many times
as it was necessary to create 1,000 objects.

5.4 .5 .2 Read A ccess

The measurements were made while read accessing an object 100,000 times. A
slot of the “self” object within a method was accessed that many times.

5.4. Cost of Meta 137

Time
MetaStore Kernel
W ith Shared Structures

35.62 sec
38.83

Ratio 1.09
The version of MetaStore that handles shared structures added about 9% overhead
in reading slot values over the MetaStore kernel.

5.4 .5 .3 W rite A ccess

The measurements were made while write accessing an object 100,000 times. A
slot of the “self” object within a method was accessed that many times.

Time
MetaStore Kernel
W’ith Shared Structures

254.70 sec
261.90

Ratio 1.03
The version of MetaStore that handles shared structures added about 3% overhead
in writing slot values over the MetaStore kernel.

5.4 .5 .4 Rem arks on Shared Structures

Supporting the persistence of shared structures as designed in section 3.11.3 did
not add much overhead when compared against the MetaStore kernel as demon
strated with the measurements in creating objects and read and write accesses to
objects. This was consistent with what was expected because the main source of

overhead was from maintaining an extra “e^-test” hash table. When the incremental
difference was compared against the measurements made from the transient case,
however, the difference was still significant in read and write accesses as we can see
below:

138 5. Implementation Results

Time Ratio
Read Access: Transient

Shared structures
0.13 sec
3.21

1.00
24.69

Write Access: Transient
Shared structures

0.11
7.20

1.00
65.45

5.4.6 Cost of V irtual O bject M em ory

On top of the MetaStore kernel with shared structures as was done in the
previous subsection (5.4.5), the virtual object memory as designed in section 3.12
was added and the measurements were made in creating objects, reading slot values,
and writing slot values to see the isolated cost of the virtual object memory. Here,
10,000 objects were created and 1,000,000 read and write accesses were made. A
larger numbers than the ones used so far were used because the virtual object
memory idea itself was designed to deal with large number of objects.

5.4.6.1 Creation

The measurements were made while creating 10,000 objects. Three variations
were tried: (a) with the high water mark at 50,000 so that there was no flushes
happening while objects were being created, (b) with the high water mark at 5,000
so that there was 5,000 flushes done, one flush at a time, and (c) with the high
water mark at 5,000, but 20% (1,000) of objects in use were flushed at a time so
that there was 5 flushes. The results were as follows:

5.4. Cost of Meta 139

Time B ytes Consed
Kernel w/ Shared Structures 224.35 sec 21.200.288
(a) No Flushes 234.99 23,360.008
(b) One Flush at a Time 240.45 23,360.008
(c) Flush 20% at a Time 247.54 23,360.248
Ratio: (a) vs. Kernel 1.05 1.10

(b) vs. Kernel 1.07 1.10
(c) vs. Kernel 1.10 1.10

Supporting the virtual object memory added some overhead in all three cases
experimented, (a) When the high water mark was set high enough so that no
flushing was done, about 5% overhead was added, (b) W'hen the high water mark
was set low and if one object was flushed at a time, about 7% overhead was added,
(c) When the high water mark was set low and if 20% of objects in virtual memory
was flushed every time the high water mark was reached, about 10% overhead was
added. In space, about 10% overhead was added in all three cases compared with
the MetaStore kernel.

5.4.6.2 Read Access

The measurements were made while read accessing an object 1,000,000 times
with 10,000 objects in the high water watch and with the high water mark set at
50,000. A slot of the “self” object within a method was accessed that many times,
and the results were as follows. Note that it did not make sense to try different
values for the high water mark on read accesses, thus only one case was explored.

Time
Kernel w / Shared Structures
W7ith Virtual Object Memory

320.93 sec
356.20

Ratio 1.11
The version of MetaStore that handles the virtual object memory added about 11%
overhead in reading slot values over the MetaStore kernel with shared structures
handled.

5.4 .6 .3 W rite A ccess

The measurements were made while write accessing an object 1,000,000 times
with 10,000 objects in the high water watch and with the high water mark set at
50,000. A slot of the “self” object within a method was accessed that many times,
and the results were as follows. Here again, it did not make sense to try different
values for the high water mark on write accesses; thus only one case was explored.

140 5. Implementation Results

Time
Kernel w / Shared Structures
WTith Virtual Object Memory

2,652.04 sec
2,702.53

Ratio 1.02
The version of MetaStore that handles the virtual object memory added about 2%
overhead in writing slot values over the MetaStore kernel with shared structures
handled.

5.4 .6 .4 Rem arks on V irtual O bject M em ory

Supporting the virtual object memory as designed in section 3.12 did not add
much overhead when compared against the MetaStore kernel with shared structures
handled as demonstrated with the measurements in creating objects and read and
write accesses to objects. This was consistent with what was expected because the
main source of overhead was from maintaining high-water-watch, whose algorithm
was analyzed in section 3.12.3. When the incremental difference was compared
against the measurements made from the transient case, however, the difference
was still significant in read and write accesses as we can see below:

Time Ratio
Creation: Transient

Virtual Object Memory
16.10 sec
34.00

1.00
2.11

Read Access: Transient
Virtual Object Memory

1.30
35.27

1.00
27.13

Write Access: Transient
Virtual Object Memory

1.10
50.49

1.00
45.90

5.4.7 Rem arks
cause me to understand wherein I have erred

Job 6: 24
Focusing on the MetaStore kernel, most of the overhead was caused by (i) the

: around methods and (ii) the case analysis on slot values to add or remove pholes
if necessary on object creations and write accesses. Although substantial, some
changes in the design of MetaStore would eliminate most of this overhead. To see
what kind of difference in performance we could expect, some changes in the design
of MetaStore were explored. The use of metaobject protocol was still kept except
that all : around methods were eliminated. The changes that were necessary to
eliminate most of the overhead included:

• Replacing all the : around methods with macros. For example, the macro
p-make-instance is defined, which calls make-instance to create an ob
ject. Immediately after calling make-instance, it handles other persistence
related work such as adding pholes to slots. Similar macros are defined for
slot-value-using-class and (setf slot-value-using-class). These
macros in essence simulate the : around methods.

• Blindly adding a phole to each slot so that the case analysis on the type of a
slot value is not necessary. Because the case analysis is done on every write
access to an object, the overhead was significant. Adding a phole to each slot
would eliminate the case analysis. This new algorithm, of course, uses more
space. Thus, it is the issue of trade offs between time and space. Because
either a read or a write access to a slot is one of the most critical aspect of
an object system in terms of performance, time might be considered more
important than space. Each phole is a record with five fields.

W ith these changes, measurements were made to compare with the measurements
obtained with the MetaStore kernel in the original design as was presented in section

5.4. Cost of Meta 141

5.4.4. The measurements we see with these changes are the best we could hope for
unless we ask users to explicitly tell MetaStore about dirty bits at all times.

142 5. Implementation Results

5.4.7.1 Creation

For creating objects, the most noticeable difference was seen when the MetaStore
kernel (56.35 seconds) was compared with the normal transient case (3.40 seconds).
W ith these changes, the following measurements were obtained:

Time
Before MetaStore
MetaStore Kernel (Original Design)
MetaStore Kernel (Changed Design)

3.40 sec
56.35

3.44
W ith these changes, creating objects in MetaStore kernel took about the same
amount of time as creating objects with the native PCL. Because Lucid CLOS is
about 56.67 times faster (section 5.2.1) in creating objects than PCL, the over
head of MetaStore in Lucid CLOS with these changes in the design would not be
noticeable.

5.4 .7 .2 Read A ccess

For read accesses to an object, the most noticeable difference was seen when an
: around method was defined for slot-value-using-class. A read access with
the : around method was about 268.15 times slower than one without it (section
5.4.2). W ith these changes, the following measurements were obtained:

Time
Before MetaStore
MetaStore Kernel (Original Design)
MetaStore Kernel (Changed Design)

0.13 sec
35.62

0.13
W ith these changes, a read access to an object in MetaStore was the same in speed
as the one to a transient object. This is quite consistent with our expectation
because about the only extra work that a read access does with this new design

is one level of indirection, which is looking up a value in a structure created by
def struct in our implementation. Looking up a value in a structure is negligible as
was shown in section 5.3.2. The access is to a slot value that has been instantiated.
The slots that are not instantiated will be analyzed in section 5.5.

Even with the original design of MetaStore, a read access in MetaStore will be
almost as fast as a read access in the native Lucid CLOS. As is shown in section
5.2.5, Lucid CLOS was not affected much on read accesses by the : around methods.
That is, the optimization done on reading slot values is not lost by added : around
methods in Lucid CLOS. Thus, most of this difference on read accesses between the
MetaStore kernel and transient case would disappear when MetaStore is ported to
Lucid CLOS.

5.4 .7 .3 W rite A ccess

For write accesses to an object, the most noticeable difference was seen again
when an :around method was defined for (setf slot-value-using-class). A
write access with the : around method was about 326.36 times slower than one
without it (section 5.2.5). W ith these changes in the design of MetaStore, the
following measurements were obtained:

5.4. Cost of Meta 143

Time
Before MetaStore
MetaStore Kernel (Original Design)
MetaStore Kernel (Changed Design)

0.11 sec
254.70

0.54
Even with these changes, a write access to an object with MetaStore was still
about five times slower than the one with a write access in the native PCL. The
extra overhead was caused by maintaining dirty bits. When a slot is modified
repeatedly, this overhead may be too much to bear. If the overhead in write
accesses is too large to accept, one possible solution would be to force user programs
to tell the MetaStore explicitly what is becoming dirty. When a slot value is

repeatedly modified, this change would be a big win because a user program
must tell MetaStore only once. W ith the tools that detect programming errors
as described in section 3.10.3, this may be an acceptable alternative.

5.5 Cost o f S t o r e

So far, the focus has been on the cost of dealing with objects in virtual memory.
In this section, the cost associated with dealing with secondary storage is analyzed.
It is expected that a disk access is much slower than an in-memory access. Thus,
the secret is to minimize disk accesses in tight loops. One of the goals in MetaStore
is to keep as much data in virtual memory as possible while maintaining the system
performance at an acceptable level.

First, the performance of saving objects is analyzed, followed by that of lazily
loading objects. Then, object and slot clustering is analyzed, followed by preloading
and some general remarks.

5.5.1 Saving O bjects
To measure the cost of saving objects to secondary storage (the object base),

1,000 objects of various sizes were created and saved. In the current implementation
of MetaStore, all Lisp objects are saved in textual forms, i.e., in the ASCII format.
Based on our experience with CDRS, saving some selected Lisp data types such
as floating point numbers into a binary format reduces the saving time by a factor
of 3. Saving all persistent data in a binary format would certainly improve even
further, but it was not done in the initial implementation. The measurements made
on saving objects were as follows:

144 5. Implementation Results

Total File Size Average Object Size Saving 1,000 Objects
151,101 bytes
951,785

1,500,656
2,940,156
6,046,286

151 bytes
951

1,500
2,940
6,046

24.85 sec
35.45
44.68
65.56

107.39

From the table above, the time it took to save an object was almost directly
proportional to the size of an object. Because a small number (on the order of
10 to 20) of objects are modified on the average in each user operation in a CAD
system like CDRS, where the average object size is about 350 bytes, it would take
about 0.53 seconds for 20 objects if we decided to save all the modified persistable
objects after each user operation. That would be quite acceptable.

The major contributors on the saving time are: (i) encoding objects which
translates memory addresses to persistent identifiers and (ii) the actual writing
of encoded objects to a disk file. Most of the saving time is spent on the latter
phase as we can see in the table below. In each case, 1,000 objects were saved:

5.5. Cost of Store 145

Total File Size Average Object Size Encoding Time Writing Time (%)
151,101 bytes
951,785

1,500,656
2,940,156
6,046,286

151 bytes
951

1,500
2,940
6,046

12.27 sec
13.40
16.94
21.83
31.52

12.58 sec (50.62)
22.05 (62.20)
27.74 (62.08)
43.73 (66.70)
75.89 (70.65)

Average % (62.45)

5.5.2 Lazily Loading O bjects

In this section, the speed of lazy loading is analyzed. The objects saved in
various files in the previous section (5.5.1) were loaded one file at a time in the
following fashion. As soon as objects are saved to a model file, the objects just
saved are modified so that the value of a slot is n i l . Then, each object is accessed
one at a time for a read of the slot that is just set to n i l , which causes the slot to
be instantiated by loading the value of the slot from the model file. Because only
one slot of each object is loaded, the reads done for each object were not sequential.
This test was done for each of those five model files saved in the previous section.
Thus, in each test, 1,000 composite slot values were loaded, each instantiating a
slot in an object. The results are shown below:

146 5. Implementation Results

Total File Size Average Slot Size Loading 1,000 Slots
151,101 bytes
951.785

1,500,656
2,940,156
6.046,286

50 bytes
317
500
980

2.015

2.86 sec
7.14

10.11
18.05
35.32

In the MetaStore kernel, the time taken for 1,000 in-memory read accesses was
about 0.36 seconds (section 5.4.4) and the comparison between this number with
the ones in the above table is shown below:

1,000 Reads Ratio
MetaStore Kernel (in-memory)
MetaStore kernel (loading from disk)

50 bytes
317
500
980

2,015

0.36 sec

2.86
7.14

10.11
18.05
35.32

1.00

7.94
19.83
28.08
50.13
98.11

As expected, a read access to a slot whose value is in disk is much slower than the
one to a slot whose value is in virtual memory. The cost of instantiating a slot with
a value from a disk file is the combination of the following:

• Disk seek time

• Reading bytes in a disk file and parsing them into Lisp objects

• Translating persistent identifiers back to virtual addresses

As is the case with saving objects, most of the time was spent on the middle phase
(“Reading bytes in a disk file and parsing them into Lisp objects”) as can be seen
in the table below. In each case, 1,000 composite slot values were loaded:

Total File Size Ave Object Size Seek Reading (%) Translate
151,101 bytes 151 bytes 0.08 sec 1.17 sec (40.91) 1.61 sec
951,785 951 0.10 4.11 (57.56) 2.93

1,500,656 1,500 0.09 6.19 (61.23) 3.83
2,940,156 2,940 0.10 11.72 (64.93) 6.23
6,046,286 6,046 0.08 23.47 (66.45) 11.77

Average % (58.21)

5.5.3 O bject and Slot C lustering

To reduce the loading time of an object or a slot, clustering objects and slots
were exploited. The main goal of clustering objects and slots is to reduce the disk
seek time by controlling the locality of data.

To see the effect of clustering objects and slots, three different possibilities were
prepared and compared:

1. Loading by sequential reads: This is the best any clustering algorithm could
do.

2. Typical lazy loading: These are the results shown in the previous section.

3. W orst case lazy loading: On each loading of a slot value, a substantial disk
seek is made to occur. That is, on each slot access, a load is done from a
location far enough from the previous read so that a substantial disk seek time
is guaranteed to happen. In each try with those five files saved in section 5.5.1,
the first object was accessed, followed by the 500th object, the half way down
in the file, followed by the second, followed by 501st, then 3rd, followed by
502nd, etc.

The measurements made in each of these three cases were as follows:

5.5. Cost of Store 147

Total File Size Ave Slot Size Sequential Typical W orst
151,101 bytes
951,785

1,500,656
2,940,156
6,046,286

50 bytes
317
500
980

2,015

1.21 sec
6.33
9.97

17.44
35.12

2.86 sec
7.14

10.11
18.05
35.32

3.16 sec
7.50

10.60
18.23
36.12

The typical case is about 2.36 times, 1.13 times, 1.01 times, 1.03 times, and 1.01
times faster than the sequential case for the average slot size of 50 bytes, 317 bytes,
500 bytes, 980 bytes, and 2,015 bytes respectively.

The worst case is about 2.61 times, 1.18 times, 1.06 times, 1.05 times, and 1.03
times faster than the sequential case for the average slot size of 50 bytes, 317 bytes,
500 bytes, 980 bytes, and 2,015 bytes respectively.

The effect of clustering is the most noticeable when the average size of data read
in is small, which is expected because multiple reads can be made in a single read
buffer fill when there are many small items in the buffer. As the average size of
slot values gets larger, the effect of clustering is negligible. W ith large slot values
or objects, large enough to fill at least half the buffer, each read would require a
substantial disk head movement, thus diminishing the effect of clustering. In most
object-intensive applications that use many large slot values and objects, clustering
would not help very much.

The effect of disk seek time was not large at all based on the numbers in the
table above, and this was supported by the following simple experiment. To see
the cost of disk seek time, 3,000 seeks were made at 980 byte intervals for a file
of 2,940,156 bytes. These 3,000 seeks took only 0.25 seconds, which is negligible
compared with the overall time spent on reading any of those five files above. This
suggests that the majority of time spent on loading an object or a slot value is for
something other than disk seek time.

We expected that clustering would not be good enough to compensate for the
extra overhead of loading objects from a disk file, but did not expect that the effect
would be this small. An alternative was thus benchmarked in the next section.

5.5.4 Preloading O bjects

Among the major factors that contribute to the cost of loading an object or
a slot value as listed in section 5.5.2, reading and making Lisp objects out of a
byte stream and decoding persistent identifiers were the main sources of overhead,
much larger than the time spent on disk seeks as we saw in the previous section.

148 5. Implementation Results

Therefore, substantial improvements can only be made by improving one of these
main contributors. However, dealing with reading bytes in a disk file and parsing
bytes into Lisp objects are beyond the scope of this research. There isn't much that
can be done to improve the algorithm for decoding persistent identifiers. Therefore,
the idea of preloading was exploited, and some benchmark results are presented in
this section.

The most important and critical aspect of preloading was to decide what to
preload. Unfortunately, it is very much application dependent. In CDRS, for
example, things that are needed to display objects on the screen will be preloaded.
Beyond that, other things are preloaded depending on what a user intends to do,
e.g., modeling, rendering for pictures, or both.

On a real world model built by one of the automotive companies that use CDRS
as a design tool, the time taken to preload all the objects needed for displaying
and modeling was compared with the time it took to load the model in batch mode
without MetaStore.

5.5. Cost of Store 149

File Size Full Load Preload R atio
5.529,850 bytes 1,455 sec 158 sec 9.21

“Full load” loads more data than “Preload” does. However, with “Preload,” one
can choose what to load initially and load only the things that need be loaded
on dem and.later while a user is using the system. Although some extra time is
spent on lazy loading, the benefit of not having to have all the objects loaded into
virtual memory all the time would outweigh the annoyance brought by the extra
time required by lazy loading. Because a small number (on the order of 10 to 20)
of objects are needed on the average in each user operation in a CAD system like
CDRS, where the average object size is about 350 bytes, it would take about 0.14
seconds for 20 objects if we decided to lazily load all the objects needed for each
operation. Once enough objects are loaded, the overhead of lazy loading will not

be very noticeable simply because there won’t be much lazy loading to do any more
then.

Cutting the initial waiting time in loading by a factor of 10, possibly more
depending on what a user wants to do, is a significant improvement. W ith the
capability of preloading objects selectively, users now have control over what is
loaded, thus being able to cut the waiting time.

5.5.5 Rem arks

The critical aspects of dealing with secondary storage is the performance of
saving and loading objects. The numbers in section 5.5.1 suggest that the perfor
mance of saving objects is acceptable because there will in general be many small
transactions of saving small number of objects at a time. In an application like
CDRS, it would generally be 10 to 20 objects and about a half second to save this
many objects at a time. Being able to do an incremental saving of objects reduces
the waiting that a user must do in many full saves of all the objects as has been
done in CDRS.

The numbers in section 5.5.2 suggest that a truly lazy loading of objects and
slots of an average size is about 20 times slower than the speed of an in-memory
access of a slot in the MetaStore kernel. It wouldn’t be acceptable to load all the
objects one needs lazily because of this overhead. It has been shown in CDRS
that loading all the objects at the beginning of an editing session is not acceptable,
either. Therefore, a compromise between these two extremes is benchmarked. It
is the combination of preloading and lazy loading. Once we load enough of what
a user initially needs given an editing session, whatever else needed is then loaded
lazily. The numbers in section 5.5.4 suggest that preloading of all the keyed objects
in a real world model in CDRS is about 10 times faster, which takes about 2.5
minutes, than a full load taking over 24 minutes. When a user wants to render a

150 5. Implementation Results

model for pictures instead of editing models, for example, much less data would be
necessary to be loaded, thus requiring much less waiting time than even 2.5 minutes,
we project. A more important benefit of this approach is to be able to control what
is loaded. In most cases, only the things that are truly needed are loaded, thus
enabling a better utilization of the memory space available for a program. W ith
CDRS, we have seen it crashing many times because the system runs out of space
in performing a garbage collection. W ith preloading, lazy loading, and the virtual
object memory, this sort of problem will go away.

One disappointing aspect in our benchmark results is the insignificance of the
benefits from object and slot clustering. Because the majority of loading time is
spent on something other than disk seeks, improvements made by clustering is
negligible. The benefit of clustering objects is most noticeable when the objects are
small in size. In an application like CDRS, however, objects are large enough that
the benefit of clustering is negligible. Improving the Lisp reader would be a good
investment for a quick improvement on loading objects. Based on our experience
with CDRS, a customized reader for a specific kind of data are about 30 times
faster than the general reader supported by Lucid Common Lisp. Although the
benefit would be quite noticeable, it is not very interesting and is beyond the scope
of this research.

5.5. Cost of Store 151

6 Sum m ing U p

Better is the end of a thing than the beginning of it
Ecclesiastes 7: 8

In this dissertation we have described the design, an implementation, and the
implementation results of the persistent object system MetaStore. MetaStore was
implemented using the metaprogramming facilities of an object system to extend it
with persistence. In the initial implementation, the metaobject protocol of CLOS
was used. The main goal of MetaStore was to support persistence for object
intensive applications such as CDRS.

Achieving this goal required designing a persistent object store that provides
a database management system to deal with secondary storage and extending an
object-oriented programming language via its metaprogramming facilities to add
object persistence. We summarize these research contributions in section 6.1. In
the course of our research we have identified a number of areas that merit further
investigation; we outline these areas in section 6.2.

6.1 C ontributions
Know honor, yet keep humility.

Lao Tsu, Tao Te Ching

The primary contribution of this dissertation is the design of a portable persistent
object system that uses the metaprogramming facilities of an object-oriented pro
gramming language, thus not requiring any help from user programs or any support
from the language compiler or the run-time system. A persistent object store was

also designed to support the database management features for the persistent object
system. To monitor the amount of data in virtual memory, a virtual object memory
scheme was also added to the system.

We identified three schemes via which an object-oriented programming system
can be extended with persistence. Persistence can be added to a programming
system at the base language level, at the application level, or at the metalevel. The
metalevel scheme was chosen for MetaStore.

The metaobject protocol [23] of the Common Lisp Object System [8] was used to
extend CLOS with object persistence at the metalevel in the initial implementation
of MetaStore. By doing so, we investigated the feasibility of using metaprogram
ming in language design. Our experience showed that the metaobject protocol of
CLOS was indeed powerful enough to do most of what was required for persistence
extension although a few deficiencies and some concerns were encountered. Some
were deficiencies in the design of the metaobject protocol, and others were related
to performance in the current implementation of the metaobject protocol used in
MetaStore, and they are listed here:

1. Maintaining dirty bits for incremental saves could not be done for things that
do not have their own persistent IDs without some help from user programs
and/or the base language implementation level. An array in Common Lisp
is such an example. Objects and slots in MetaStore were fine because they
do have IDs. Trying to maintain dirty bits for nonobject composite values
in MetaStore was the case when we were attem pting to support orthogonal
persistence without the proper support from the language implementation
layer.

2. The situation in supporting the persistence of shared structures was quite
similar to the one in dealing with dirty bits. Structured data that are neither

154 6. Summing Up

objects nor direct slot values in MetaStore have no persistent IDs. Therefore,
help from user programs and/or the base language implementation level was
also required to support persistence of such structures.

3. Supporting persistence at the slot level granularity required one level of indi
rection on slot accesses and the metaobject protocol does not have a way of
supporting the indirection.

4. Some optimizations done in the current implementations of PCL [7] and Lucid
CLOS [30] were lost when some aspects of the metaobject protocol were used.
The loss of optimizations is significant enough that we would have to either
change the design of MetaStore or improve the implementation of CLOS, the
latter being our preference.

The first two are considered properties belonging to the base level language imple
mentation technology, the third is a deficiency of the metaobject protocol, and the
last a limitation in the current implementation of the protocol.

Based on the initial implementation of MetaStore, we propose some short-term
and long-term improvements to the metaobject protocol of CLOS:

• Short-term : In the short-term we propose the addition of one level of indirec
tion, that can be used optionally, on slot accesses of objects. To support the
slot level persistence, one level of indirection on slot accesses was necessary for
the persistence implementor.

To be more general, it would be even better to extend the syntax and semantics
of method combinations in object-oriented programming languages in such a
way that specialized methods can be optionally skipped at the user’s control.
This is not an easy extension to support in general because it requires an
elaborate control over all the methods: primary methods, : before methods,

6.1. Contributions 155

: a f t e r methods, and : around methods. Given this option, an : around
method that handles persistence can optionally be skipped when necessary.

156 6. Summing Up

• Long-term: In the long-term, we propose that the metaobject protocol be
pushed down to the base language implementation level by implementing each
data type supported in the language as an object with appropriate access via
metaobject protocols so that seamless extension of persistence can be made
without having to depend on the user programs’ help or on ad hoc means of
dealing with difficult issues such as maintaining dirty bits or handling shared
structures as was done in the initial implementation of MetaStore. By pushing
the protocol down to the base language implementation level, we can enjoy the
advantages of the metalevel and base level persistence schemes as well as those
of the application level scheme. The only concern with this change would be
of performance, but we have shown in section 5.3 that objects are not much
more expensive than other traditional data structures such as arrays, lists,
and structures as long as we can add adequate optimizations and preserve
them. Designing CLOS with the metaobject protocol was a careful decision
and proven by MetaStore and by Rodriguez [41] to be a good one; we now
have to extend it to another level down with another careful decision.

The most critical aspects of an object-oriented programming system in terms
of performance are: (1) creating objects, (2) accessing an object for a read, (3)
accessing an object for an update, and (4) method dispatching or more generally
method calls. The impact of extending an object-oriented programming system
with persistence at the metalevel turns out to be substantial: the current design
of MetaStore overburdens object creation and write accesses by approximately
13 times and 7 times respectively compared with transient cases. The reason
object creation has larger overhead than write accesses is that it is compounded by

write accesses because object creation requires write accesses. The impact on read
accesses and method calls was negligible. Any overhead we add to these critical
aspects may be too much if we want objects to be competitive with other traditional
data structures. Therefore, we have to be willing to accept some overhead with the
benefit of convenient persistence support or find an alternative way of supporting
persistence otherwise. If MetaStore were to run on Lucid CLOS, we would expect
object creation to be about 4 instead of 13 times slower than the transient case,
and other aspects to be about the same as they are in PCL.

Substantial improvements can be made on the performance of MetaStore by
changing our design somewhat by: (i) eliminating the overhead of : around methods
by replacing them by macros, and (ii) eliminating case analysis on slot accesses as
described in section 5.4.7. W ith these changes, object creation and read accesses
were as fast as they were with transient objects. Write accesses were still about five
times slower than they were in the transient case. The overhead on write accesses
could be eliminated by requiring user programs to inform MetaStore on dirty bits
and sacrifice on the sharing of persistent structured data.

Supporting persistence grain size at the slot level was critical to the design of
MetaStore. It made the virtual object memory scheme and sharing composite slot
values by multiple objects possible. Because most objects are large due to large
composite slot values in object-intensive applications, being able to flush out some
of objects that are not likely to be accessed for a while is critical in maintaining
the system performance at an acceptable level.

Another critical aspect of a persistent object system is how the database man
agement features, including secondary storage management, are handled. We
summarize notable aspects of them here:

• Preloading: A pure lazy loading of all persistent objects is too slow to be
practical as shown in section 5.5.2. The batch-oriented load of an entire

6.1. Contributions 157

model file at the beginning of each session is also not practical enough as
we experienced with pre-MetaStore CDRS. A combination of these two seems
most appropriate and is adopted in MetaStore. Preloading of certain objects
in the batch-mode in sequential reads at the start of each session lets us start
quickly and lazy loading of slot values and other objects helps us continue
with only the data that are necessary to be loaded. W ith a graphical user
interface-based application like CDRS, preloading of certain objects turns out
to be critical because a user has to be able to see what is in a design to continue
editing.

• Queries: Even with preloading of certain objects, user programs would have
to load other objects, and several ad hoc means of querying the object base
turns out to be adequate for a design environment like CDRS. It is not clear
if a general purpose query language support is necessary for this kind of
applications.

• Indexing: Indexes were used to load keyed or named objects efficiently on
queries. Supporting indexes on these objects alone rather than on all objects
were adequate because some objects are owned by others. Because there is no
use loading the owned when the owner is not loaded, maintaining indexes for
top level objects (owners) alone was adequate.

• Transactions: Because we chose to use a minimal degree of concurrency con
trol, the most critical aspect was ensuring atomic updates in the object base.
We used the shadow paging algorithm [51] and it was quite adequate for our
purposes. The degree of sharing of models between users and the degree of
simultaneous editing of the same model in CDRS are so small that locking
a design file for concurrency control was again quite adequate. The nested
transaction scheme was particularly useful for atomic updates of the object

158 6. Summing Up

base with incremental saves because of the long duration locking scheme used
with checkout-locks.

6.1. Contributions 159

• Crash recovery: The checkpoint mechanism along with shadow paging seems
to provide adequate support for object-intensive applications. Incremental
checkpoints reduce the overhead of checkpoints to a minimum and the use of
checkpoints for undo operations would be quite useful for many application
programmers who use MetaStore. Undo operations are critical in design
environments with long transactions and it is very difficult and complicated to
support in application programs without the help of a tool such as MetaStore.
W ith the help of the nested transaction scheme, recoveries are done to the
beginning of a nested transaction rather than to the beginning of a checkout
transaction, thus reducing the chance of a large loss on a crash.

• Object base garbage collection: The shadow paging algorithm used for atomic
updates of the object base and for the purpose of supporting crash recoveries
and multiple versions generates a lot of garbage in model files. Collecting
garbage in batch mode during off hours seems adequate because it can be
done on many workstations in a distributed fashion. When a user is ready
to go home, he would simply start the garbage collector on his machine. The
collector then checks a file out of the object base and performs the collection.
Many workstations can perform the collection as many can interface the object
base.

• Object clustering: Object clustering is done to reduce the disk seek time during
loading of objects. Our experience was quite disappointing because the benefit
of clustering was insignificant. Because the majority of loading time was spent
on something other than disk seeks, improvements made by clustering were
negligible. The benefit of clustering objects are most noticeable when the

objects are small in size. In an application like CDRS, however, objects are
large enough that the benefit of clustering is negligible. Improving the Lisp
reader would be a good investment for a quick improvement on loading objects.
Based on our experience with CDRS, a customized reader for a specific kind
of data is about 30 times faster than the general reader supported by Lucid
Common Lisp. Although the benefit would be quite noticeable, it is not very
interesting and is not pursued in this research.

• Version control: A version is an attribute of a model file rather than that of
an object in MetaStore. It was designed so because each model file is roughly
what a user considers an “object.” For example, a door of a car is an object to
the user rather than a curve that makes up the door. Because a new version is
created at the control of a user, we felt that supporting versions at the user’s
object level seemed right. Because of complex relationships among objects,
treating the user’s “object” as an object rather than an instance of a class
as an object made many of our algorithms simpler. The version control and
atomic updates of the object base are two such examples.

• Multiple model files: Because of the user’s view of the object base as a collection
of user level “objects,” it was important to support editing or viewing multiple
user “objects” in MetaStore. It is much like dealing with multiple flat struc
tured databases. Some difficulties of editing multiple model files include: (i)
when a new object is created, there is no good way of knowing which model the
new object logically belongs to, and (ii) there is no simple way of dealing with
object references that crosses a model file boundary. In MetaStore, we chose a
rather simple scheme in which: (i) there is only one model file that is writable
in a session, and (ii) a copying scheme is used rather than a sharing scheme
to deal with object references that cross a model file boundary as described

160 6. Summing Up

in section 4.8. The choice of copying scheme was motivated by the fact that
object clustering, deleting a model file, merging multiple model files into one,
extracting a model file to send to a different site, and garbage collecting a
model file would all be much simpler with the copying scheme than with the
sharing scheme.

To monitor the amount of data in virtual memory, we included the virtual object
memory in MetaStore. When many objects are loaded into virtual memory either
by preloading, lazy loading, or queries, there is no way of reducing the amount of
data in virtual memory other than by deleting them. However, depending on the
semantics of a delete operation, deleting may not be the right thing to do. Thus,
we introduced the notion of flushing an object. WThen an object is flushed, the
space occupied by the persistable composite slot values of the object is released.
W e chose the least recently used flushing policy in MetaStore. Registering object
accesses on each read or write access via the use of the metaobject protocol is
expensive as shown in section 5.4.6. To reduce the cost of monitoring accesses, we
may have to require user programs to tell MetaStore on some selective read or write
accesses. WThen an object is repeatedly accessed in a tight loop, telling MetaStore
only once would be enough, whereas MetaStore would register the access on every
access if it was done by MetaStore with no user program’s help as in the current
implementation.

In designing a persistent object system we had to resolve many issues: some
language related and others database system related. There were different possible
solutions in all of these issues, and we had to make design choices on each of
these. Design decisions were made based on practicality, generality, completeness,
and elegance. Many decisions were, however, influenced by the experience with
and requirements of a real world application that initially motivated this research,
CDRS [26]. We feel that the decisions made in the design of MetaStore will be of

6.1. Contributions 161

a significant value to the future research in this area because they were based on a
production system being used by many users.

Based on the initial implementation of MetaStore, we also presented various
benchmark results in sections 5.2 through 5.5 that could be used in making future
design decisions for persistent object systems. The results are analyzed and sum
marized in the subsection titled “Remarks” in each of these sections. Rather than
repeating the results here, we refer the readers to these subsections for details.

6.2 Future Work
Better stop short than fill it to the brim.

Lao Tsu, Tao Te Ching

Future work can take on different directions: in the direction of programming
language design, database management, and/or implementation techniques. We
suggest some possibilities in each of these areas.

Designing programming languages with the metaobject protocol concept is ex
citing and seems practical enough as is being demonstrated by the successful use
of the Common Lisp Object System in many industrial, research, and academic
environments. Although there were a few minor deficiencies with the current design
of the metaobject protocol of CLOS and there were some efficiency concerns due
to the loss of optimizations when some features of the protocol were used, our
experience with the protocol was quite positive. The metaobject protocol idea is
revolutionary in language design and it was almost perfect to use in extending
CLOS with object persistence, which is a substantial task. We list some future
directions in this area:

• We should investigate the possibility of extending the syntax and semantics of
method combinations in object-oriented programming languages so that some
specialized methods in a combination can optionally be omitted at the user’s
control. CLOS supports a simple ordering of :before, : after, : around, and

162 6. Summing Up

prim ary methods, and we should see if some of these can safely be omitted from
the operational semantics without disturbing the generality. It is necessary to
be able to skip an : around method, for example, in implementing MetaStore.
This extension, if feasible, should be included in the protocol.
If this extension is not feasible, then we should support some way of perform
ing one level of indirection on slot accesses of an object for the persistence
extension.

• The current implementations of CLOS seem to be efficient enough to be
competitive to other traditional data structures such as arrays, lists, and
structures in some special contexts. We should pursue better implementation
techniques for objects so that they can be competitive to other data structures
in almost all contexts. By competitive we mean objects are almost as efficient
as other data structures because some deficiency in speed can be made up for
by the advantages of objects such as modular design and software reuse.

• We should also investigate the possibility of pushing the metaobject proto
col idea down to the base language implementation level so that supporting
the persistence of all the persistable data types in a language can easily be
implemented.

In MetaStore we focused on persistence of passive data, i.e., the instances of
classes. A natural extension to it would be to handle the evolution of not only
the passive data but also the code that manipulates the data. The notion of class
evolution in the context of persistent programming is an open research issue. One
possible direction of research on class evolution would be doing it with the help of
metaobject protocols.

In an application like CDRS which is implemented mostly in Common Lisp and
CLOS, some parts of the system could be implemented in a more efficient language

6.2. Future Work 163

such as C + + for better performance. Mecklenburg [34] deals with the problem of
mixed language programming in an object-oriented programming environment in a
general fashion by using an object specification language in a language independent
way. Although less general but more pragmatic than the approach of [34], extending
MetaStore to deal with foreign objects via the metaobject protocol of CLOS is
a distinct possibility. Just as we introduced the slot level persistence with the
metaobject protocol, we can allow a slot to be declared a type of a : foreign
slot, which points to a foreign object, say a C + + object. W ith this scheme, we
would have the notion of master and slave languages. Because Common Lisp with
CLOS is considered a good language to use for user interface design and controlling
the execution and C + + is considered good for the efficiency of computationally
intensive routines, we could use Common Lisp with CLOS and the metaobject
protocol as the master and C + + as the slave.1

We described ideal solutions as well as practical solutions for dealing with dirty
bits and shared structures in this dissertation. Based on our analyses without
actually implementing different possibilities, we chose the practical solutions for
the initial implementation of MetaStore. We could investigate these issues further
by actually implementing different possible solutions so that we can make concrete
comparisons. •

Once a real world application like CDRS is fully ported to MetaStore, we can
tune the system with the virtual object memory by coming up with good heuristics
for the high water mark and the size of the buffer used by the virtual object memory
algorithm.

So far, we have looked at the possibilities of future work in the context of
programming language design. We now do the same in the context of database
management. In general, a simple scheme for each of various issues related to

XA comment by one of the local Lispers: “I like it. C + + people would hate it w .”

164 6. Summing Up

the database management was adopted in MetaStore partly because it was good
enough for the purpose of MetaStore supporting an application like CDRS and
partly because elaborate schemes would be beyond the scope of this dissertation.
More elaborate schemes can be investigated on some issues in the future and they
include:

• D istribution: So far, we have not considered MetaStore in a distributed envi
ronment, and it is only natural to think about extending it to be a distributed
persistent object system.

• Version control: In the current design of MetaStore, a version is an attribute
of a model file. For more elaborate control of versions, we can easily extend it
so that a version is an attribute of objects. The design of MetaStore is flexible
enough that this extension would be quite smooth to make.

• Concurrency control: Concurrency control was done at the model file level.
We could extend it to the individual object level.

• Query language: We could certainly investigate the possibility of introducing
a query language to MetaStore rather than using several ad hoc means of
querying the object base. We are not quite convinced that it is necessary to
do so though.

• Object clustering: Although the benefit of object clustering for applications
like CDRS was minimal due to the large size of objects, it might be useful for
the applications that use objects of small sizes. It is stated in Mneme [37], for
example, that the “typical size” of objects for languages such as CLU [28,29],
Smalltalk-80 [16], and Trellis [42] appears to be in the range of 30 to 50 bytes.

• Multiple models: When multiple models are opened in an editing session, a
copying scheme is used in the current design of MetaStore in dealing with one

6.2. Future Work 165

object making references to other objects in different model files. Investigating
the cost of supporting the sharing scheme would be an interesting research
because dealing with multiple model files in MetaStore is similar to dealing
with multiple flat structured databases, which could be of interest to a wider
database research community.

• Object base garbage collection: In the current design of MetaStore, garbage
collections are done statically. Investigating the cost of supporting dynamic
garbage collection would be a possibility for future work.

• Object base file form at: For the performance and compatibility reasons, saving
objects in a standard binary file format would be useful for an application like
CDRS.

As described in section 2.2, there were some issues that MetaStore did not in
clude in its design although they are included in “The Object-Oriented Database
System Manifesto” [3]. Perhaps, a persistent object system like MetaStore should
ultimately be compatible to something like this manifesto.

Before CDRS is ported to MetaStore, we propose some modifications to the
design of MetaStore:

• Eliminating the use of : around methods in the critical aspects of MetaStore,
namely, the ones that affect object creation and accesses. This is only due to
the inefficient implementations of the object systems currently available to us.
Using macros as we described in section 5.4.7 is a possibility.

• Eliminating the case analysis on write slot accesses by adding a phole at object
creation time to each persistable slot that is declared to be composite. Thus,
we would add : composite as a new slot option as we did with :transient.
If a slot is declared : composite, then it is assumed to be persistable. Space

166 6. Summing Up

occupied by pholes will be a factor to consider, but we can reduce the size
of pholes depending on what we decide to do with dirty bits and slot value
sharing.

• Not handling dirty bits on slot accesses. Let user programs explicitly inform
MetaStore of dirty bits. Programming errors can be detected by a tool pro
vided by MetaStore.

• Possibly not supporting persistence for structure sharing even on the composite
slot values. Because supporting structure sharing in MetaStore adds extra cost
to each write access to objects, this may be a reasonable sacrifice to absorb
based on our experience with CDRS. We have not supported persistence for
shared structures in pre-MetaStore CDRS, and it has not been a big issue for
the application programmers.

If we port MetaStore to Lucid CLOS with these changes to the current design, the
overhead of MetaStore on objects will be minimal and quite acceptable. Porting
CDRS to MetaStore will be done when the design and implementation of the
extension of MetaStore to handle foreign objects (C + +) are complete.

Persistence is an inherent feature of a programming system. It is as inherent
a feature as garbage collection is in a language system. A language system will
ultimately have to support it as a part of the base language implementation or pro
vide a mechanism via which persistence implementor can access the base language
internals. A metaobject protocol is one such mechanism possible if we implement
the persistable data types in a language as objects, and we should investigate the
protocol at a lower level as a possible, ultimate solution for providing flexible hooks
to the language internals for persistence implementors. Persistence we support in a
language system has to be orthogonal to the data types in the language and also has
to support a way of specifying selective persistence: selective in the sense that only

6.2. Future Work 167

certain instances of a given type is persistable. Persistence via inheritance is a good
way of supporting selective persistence. Atomic data types are not only inefficient
both in overhead and in lost concurrency opportunities [54], but also too low a level
to support persistence because of interdependence among persistable instances.
Therefore, some kind of high level concurrency control is needed to manage the
dependence among instances of data types. Persistence is inherently a low level
feature in a language system, and yet requires a high level control due to this
interdependence. Use of dirty bits as a mechanism to handle the interdependence
as we did in MetaStore might be good enough with more flexible access to the
language internals.

168 6. Summing Up

R eferences
[1] A b e l s o n , H . , a n d S u s s m a n , G . J . , w i t h S u s s m a n , J . Structure and

Interpretation o f Com puter Programs. The MIT Press, 1985.
[2] A r c h i b a l d , J . L . , a n d Y a k e m o v i c , K . C . B . , Eds. Workshop

Report on Reflection and Metalevel Architectures in Object-Oriented
Programming, OOPSLA/ECOOP (1990).

[3] A t k i n s o n , M . P . , B a n c i l h o n , F . , D e W i t t , D . , D i t t r i c h , K . ,
M a i e r , D . , a n d Z d o n i k , S . The object-oriented database system
manifesto. In Proc. o f the 1st International Conference on Deductive and
Object-Oriented Databases (1989).

[4] B a n c i l h o n , F . , a n d M a i e r , D . Multilanguage object-oriented sys
tems: new answer to old database problems? In Programming o f Future
Generation Com puters II, K. Fuchi and L. Kott, Eds, Elsevier Science
Publishers B.V. (North-Holland), 1988.

[5] B a n e r j e e , J . , K i m , W . , a n d K i m , K . C . Queries in object-oriented
databases. MCC Tech. Rep. DB-188-87, 1987.

[6] B e e r i , C ., B e r n s t e i n , P . A . , G o o d m a n , N ., L a i , M . Y . , a n d
S h a s h a , D . E . A concurrency control theory for nested transactions. In
Proc. o f the Second A C M Sym posium on Principles o f Database System s
(1983).

[7] B o b ro w , D . G., and S t e f i k , M. The Loops Manual. Intelligent
Systems Laboratory, Xerox PARC, 1983.

[8] B o b r o w , D . G . , D e M i c h i e l , L . , G a b r i e l , E . P . , K i c z a l e s , G . ,
M o o n , D . , a n d K e e n e , S . E . The Com m on Lisp Object System
Specification: Chapters 1 and 2. Tech. Rep. 88-002R, X3J13 Standards
Committee Document, 1988.

[9] Bracha , G. The programming language Jigsaw: mixins, modularity,
and multiple inheritance. Ph.D. dissertation, Dept, of Computer Science,
Univ. of Utah, 1992.

[10] C hou , H .-T ., and Kim, W . Versions and change notification in an
object-oriented database system. In Proc. o f the 25th A C M /I E E E Design
A utom ation Conference (June 1988).

References

11] C o c k s h o t t , W . P . , A t k i n s o n , M. P . , C h i s h o l m , K. J . , B a i l e y ,
P . J . , a n d M o r r i s o n , R . Persistent object management systems. In
Software - Practice and Experience, Vol. 14 (1984).

12] C o c k s h o t t , W . P . Addressing mechanisms and persistent program
ming. In D ata Types and P ersis tence , M. P. Atkinson, P. Buneman, and
R. Morrison, Eds, Springer-Verlag, 1985.

13] C o c k s h o t t , W . P . PS-Algol Implem entations: Applications in P ers is
tent Object-Oriented Programming. Ellis Horwood Limited, 1990.

14] C o o k , W . R . A denotational semantics of inheritance. Ph.D. disserta
tion, Brown Univ., 1989.

15] C o p e l a n d , G., a n d M a i e r , D. Making Smalltalk a database system.
In Proc. o f the A C M SIG M O D International Conference on M anagement
of D ata (June 1984). A C M S IG M O D Record 14, 2 (1984).

16] G o l d b e r g , A . , a n d R o b s o n , D. Smalltalk-80: The Language and its
Im plementation. Addison-Wesley, 1983.

17] H a l s t e a d , R . H. Multilisp: a language for concurrent symbolic com
putation. In A C M Transactions on Programming Languages and System s
(October 1985).

18] J e n s e n , K., a n d W i r t h , N. Pascal User M anual and Report, Second
edition, Springer-Verlag, 1978.

19] K a e h l e r T . Virtual memory for an object-oriented language. In B yte
(August 1981).

20] K a e h l e r T., a n d K r a s n e r , G. LOOM-large object-oriented memory
for Smalltalk-80 systems. In Smalltalk-80: B its o f History, Words of
Advice, G. Krasner, Ed., Addison-Wesley, 1982.

21] K e e n e , S. E. Object-Oriented Programming in C om m on Lisp: A P ro
g ra m m e r’s Guide to CLOS. Addison-Wesley, 1989.

22] K e r n i g h a n , B . W ., a n d R i t c h i e , D . M . The C Programming Lan
guage. Prentice-Hall, 1978.

23] K i c z a l e s , G., R i v i e r e s , J ., a n d B o b r o w , D. G. The A rt o f the
Metaobject Protocol. The MIT Press, 1991.

24] K i m , W ., G a r z a , J. F ., B a l l o u , N., a n d W o e l k , D. Architecture
of the ORION next-generation database system. MCC Tech. Rep. ACT-
OODS-315-89, 1989.

References 171

[25] K i m , W . , K i m , K .-C ., a n d D a l e , A . Indexing techniques for object-
oriented databases. In Object-Oriented C oncepts, Databases, and Appli
cations, W. Kim and F. Lochovsky, Eds., ACM Press, 1989.

[26] L e e , A . H. An object-oriented programming approach to geometric
modeling. In Proc. o f Evans & Sutherland Technical Retreat, Ocho Rio,
Jamaica (1989).

[27] L i p p m a n , S . B . C + + Prim er, 2nd Ed., Addison-Wesley, 1991.
[28] L i s k o v , B . , A t k i n s o n , R., B l o o m , T . , M oss, E . , S c h a f f e r t , C.,

S c h e i f l e r , R ., a n d S n y d e r , A . C L U Reference Manual. Springer-
Verlag, 1981.

[29] L i s k o v , B . , S n y d e r , A . , A t k i n s o n , R., a n d S c h a f f e r t , C.
Abstraction mechanisms in CLU. In Com m unications o f A C M 20, 8
(August, 1977).

[30] Lucid C om m on L is p /M I P S Version 4-0, Advanced U se r ’s Guide, Lucid,
Inc., 1990.

[31] M a e s , P ., a n d N a r d i , D . , Eds. M eta-Level Architectures and Reflec
tion, North-Holland, 1988.

[32] M a i e r , D . Indexing in an object-oriented DBMS. Tech. Rep. CS/E-
86-006, Dept, of Computer Science and Engineering, Oregon Graduate
Institute of Science and Technology, 1986.

[33] M a i e r , D . , a n d S t e i n , J. Development and implementation of an
object-oriented DBMS. In Research Directions in Object-Oriented P ro
gramming, The MIT Press, 1987.

[34] M e c k l e n b u r g , R. W. Towards a language independent object system.
Ph.D. dissertation, Univ. of Utah, 1991.

[35] M i l l e r , J . S. MultiScheme: a parallel processing system based on MIT
Scheme. Ph.D. dissertation, Massachusetts Institute of Technology, 1987.

[36] M o r r i s o n , R. S-Algol Language Reference Manual. CS-79-1, University
of St. Andrews, 1979.

[37] M oss, J. E. B. Design of the Mneme persistent object store. In A C M
Transactions on Information System s, Vol. 8, No. 2 (April 1990).

[38] P a e p c k e , A . PCLOS: a flexible implementation of CLOS persistence.
In Proc. o f the European Conference on Object-Oriented Programming,
S. Gjessing and K. Nygaard, Eds. Lecture Notes in Computer Science,
Springer-Verlag (1988).

References

[39] P a e p c k e , A . PCLOS: a critical review. In Proc. o f the A C M Conference
on Object-Oriented Programming System s, Languages, and Applications
(1989).

[40] P a e p c k e , A. PCLOS: stress testing CLOS: experiencing the Metaobject
Protocol. In Proc. o f the A C M Conference on Object-Oriented Program
ming System s, Languages, and Applications (1990).

[41] R o d r i g u e z , L . H . , J r . Coarse-grained parallelism using metaobject
protocols. M.S. Thesis, Massachusetts Institute of Technology, 1991.
(Also available as Tech. Rep. SSL-91-06, Xerox Palo Alto Research
Center, 1991).

[42] S C H A F F E R T , C . , C O O P E R , T . , B U L L I S , B . , K ILIA N , M ., A N D
W i l p o l t , C . An introduction to Trellis/Owl. In Proc. o f the A C M
Conference on Object-Oriented Programming System s, Languages, and
Applications (September 1986). A C M S IG P L A N Notice, 21, 11 (1986).

[43] S c h w a r z , P . Transactions on typed objects. Ph.D. dissertation,
Carnegie-Mellon University, 1984.

[44] S h a n n o n , K., a n d S n o d g r a s s , R . Semantic clustering. In Proc. o f the
Fourth International Workshop on P ersisten t Object System s, A. Dearie,
G. M. Shaw, and S. B. Zdonik, Eds., Morgan Kaufmann Publishers, Inc.
(1990).

[451 S m i t h , B . C. Interim 3-LISP Reference Manual, Xerox PARC Report
CIS-nn, 1984.

[46] S t e e l e , G. L., J r . C om m on Lisp: The Language, Second edition,
Digital Press, 1990.

[47] S t o n e b r a k e r , M., W o n g , E., K r e p s , P . , a n d H e l d , G. The design
and implementation of INGRES. In A C M Trans, on Database Systems,
1:3 (1974).

[48] S t r o u s t r u p , B . The C + + Programming Language, Second edition.
Addison-Wesley, 1987.

[49] T e i t e l m a n , W . Interlisp Reference Manual, Tech. Rep., Xerox Palo
Alto Research Center, 1975.

[50] T h a t t e , S . M. Report on the object-oriented database workshop. In
Addendum to the Proceedings o f Object-Oriented Programming Systems,
Languages, and Applications (1987).

[51] T r a i g e r , I. L. Virtual memory management for database systems. In
A C M Operating System s Review, 16 (October 1982).

References 173

[52] U l l m a n , J. D . Principles o f Database and Knowledge-Base Systems,
Vol. I and II. Computer Science Press, 1988.

[53] U n g a r , D . M . The Design and Evaluation of a High Performance
Smalltalk System . The MIT Press, 1987.

[54] W e i h l , W . E. Linguistic support for atomic data types. In A C M
Transactions on Programming Languages and System s, Vol. 12, No. 2
(April 1990).

[55] Z d o n i k , S. B. Version management in an object-oriented database. In
Proc. o f the International Workshop on Advanced Programming Environ
m ents (1986).

[56] Z d o n i k , S. B ., a n d M a i e r , D . Fundamentals of object-oriented
databases. In Readings in Object-Oriented Database System s, S. B.
Zdonik and D. Maier, Eds., Morgan Kaufmann, 1990.

So was ended all the work.
I Kings 7: 51

