
The Domain system's objective is to integrate mainframe
capability with local area networking and raster graphics capabilities at

a cost appropriate to engineering and graphics applications.

The Architecture and Applications of
the Apollo Domain

David L. Nelson and Paul J. Leach
Apollo Computer, Inc.

Apolo Computer's Domain system is a distributed
processing system designed for both general-purpose and
interactive graphics applications. It is a collection of
powerful personal workstations and server computers in-
terconnected by a high-speed local area network. Both
workstations and server computers are referred to as nodes
and are capable of running very large, complex applica-
tions. The personal workstation is provided with a high-
resolution, bit-mapped display, so that each user can
display the output of programs written in Fortran, Pascal,
or C.
A Domain server-processor can act as a file or peripher-

al server, as well as a gateway to other networks. All
workstations and server-processors share a common
network-wide virtual memory system that allows groups
of users to share programs, files, and peripherals. Figure 1
shows a Domain personal workstation node with display.
Figure 2 is a schematic overview of the Domain network
and software systems. This article describes the architec-
ture of the Domain system and the benefits of this ar-
chitecture to general-purpose applications.

Evolution of the architecture

It has frequently been observed that in their evolution,
mainframes, minicomputers, and microcomputers trail
each other by about seven years in performance and
capability. At a technological improvement rate of 30 to
40 percent per year, seven years yields the approximate
factor-of-ten separation between these three classes of
machines. Consequently, a 1975-vintage superminicom-
puter costing $300,000 can be expected to perform com-
parably to a 1982 microcomputer-based machine costing
about $30,000.

Presently, individual users can afford to purchase a
single computer system that gives them a predictably high
level of computing. At this point, however, users may

desire more from their systems than simple computing:
They may discover a need for communication. Communi-
cation is an essential part of a computing environment; it
includes the sharing of databases, programs, expensive
peripherals, and interfaces, as well as communication with
other users.

As the computing environment becomes more compre-
hensive, communication plays an increasingly important
role. Consequently, stand-alone, dedicated computers
must include the ability to communicate rapidly with other
computers. In most applications, the trend toward
dedicated workstations goes hand in hand with the trend
toward local area networking.
What are the desired architectural characteristics of

such a dedicated/network form of computing? In princi-
ple, these characteristics are well understood:

* The computer must have a mainframe architecture
capable of running large, complex application pro-
grams.

* The computer must have a highly interactive, bit-
mapped graphics capability.

* The local area network must offer high performance
and must be well integrated into the overall system
design to facilitate ease of use.

Implementing these architectural features on a low-cost
system has been the primary objective of the Domain.

Overview of the architecture

The Domain system consists of three main features: a
processor with significant computational power and a
large virtual address space; a high-speed local area net-
work; and a high-resolution, bit-mapped graphics display
subsystem. These three features interact to support system
objectives in the following ways.

First, the high computational power of a Domain node
combined with its support of a large virtual address space

0272-1716/84/0400-0058$01.00 (C) 1984 IEEE58 IEEE CG&A

permits tools traditionally used on mainframes and super-
minicomputers to be ported easily to the node and to
operate with a performance that often exceeds the perfor-
mance attained in a timesharing environment. In addition,
a nodes's high computational power plus its display sub-
system creates a user environment that increases produc-
tivity. In particular, the display can be divided into multi-
ple windows that the user can control simultaneously.
The network and a network-wide distributed file system

permit the professional to correspond with colleagues via
electronic mail and to share programs, data, and expensive
peripherals in much the same way as on larger shared
machines, without the disadvantage of having to share
computing power.
The Domain architecture creates an "integrated dis-

tributed" environment: It is distributed because users have
their own nodes, and it is integrated because the system
provides mechanisms and the user can select policies that
permit a high degree of cooperation and sharing when so
desired. (Locus, as described by Popek et al., I and Eden,
in Lazowska et al.,2 are other examples of integrated
distributed systems. The role of autonomy in distributed
systems is discussed by Svobodova et al. 3)
The Domain system fosters cooperation and sharing by

allowing users and programs to name and access all system
entities in the same way, regardless of their location on the
network. Consequently, all users and application pro-
grams view the system as an integrated whole rather than
as a collection of individual nodes. Yet the Domain system
is still a distributed system, not a loosely coupled multi-
processor. For example, the emphasis on node autonomy
and the expectation of partial network failures led

designers to develop the design criterion that suitably con-
figured machines must always be able to run even when
disconnected from the network.

Figure 1. An Apollo personal workstation node with a high.
resolution (1024 x 1024 x 8 plane) color display.

Figure 2. The Apollo Domain has personal workstation nodes and server nodes (inner circle), and software systems (outer
circle) to support sharing, cooperation, and communications for a wide variety of professional applications.

April 1984 59

The network

In the Domain architecture, the local area network oc-
cupies the place usually given to the backplane intercon-
nect in other architectures. The network is the system in-
tegration point and the primary architectural feature held
constant across new hardware implementations, instead of
a particular CPU instruction set. This design allows Do-
main to choose, at any given time and for a given cost/
performance goal, the best implementation of nodes using
state-of-the-art technology. Because the architecture
specifies only what the nodes "see" through the network,
it does not constrain the implementation of the nodes
themselves.

Network hardware. The network is a 12M-bps token-
passing ring. Other ring implementations are discussed by
Gordon et al.4 and Wilkes and Wheeler.5 Individual
nodes transmit data onto the ring by first acquiring the
token, which normally travels around the ring at a very
high rate. The system guarantees that only one token exists
on the ring at any given time; consequently, in normal
operation the network never experiences collisions (or
retries due to collisions) that would impair efficiency. (See
Saltzer, Clark, and Pogran6 for a discussion of token
rings versus contention-based access arbitration.)
At 12M bps, the network can deliver in excess of 1000

pages per second. Since (when accessed randomly) the
Winchester disks used with the nodes provide approx-
imately 20 pages per second, the worst-case configuration
can involve up to 50 pairs of nodes, where one member of
the pair is requesting pages over the network as fast as its
partner can deliver them from its disk. Although this situa-
tion is highly hypothetical, it does illustrate that under
more typical conditions the system can support a large
number of nodes, perhaps several hundred, before ex-
periencing degradation.
The Domain network is specifically designed to coexist

with other types of networks through gateway functions.
Interfaces to both low-speed (9600-baud) and inter-
mediate-speed (lOM-bps) local area networks are pro-
vided, as are high-speed (16M-bps) DMA interfaces.
These interfaces allow the collection of Domain users to
communicate conveniently with facilities located in other
computer systems.

Network management. An integrated local area net-
work, by promoting cooperation among users, will also
promote dependence on the network. Thus, an integrated
local network intrinsically needs to be more reliable than a
network designed only to connect autonomous machines.
Accordingly, the company designed two ring features to
help diagnose and repair failures: broken- (and noisy-)
link detection and topology determination.
The broken-link detection feature allows a downstream

node to detect the absence of a coherent signal from its
upstream neighbor and thus to conclude that the link has
broken. When a node determines that the cable is broken,
it broadcasts a failure report message; even though the
cable is broken, the broadcast can still be received by all
other active nodes on the network, since they are
downstream from the detecting node and the break.

Determining the network topology means determining
the order in which the nodes are joined to form the ring.
The network controller provides the mechanism for con-
struction of a topology map. With a broken-link report
and a network topology map, link failures can be isolated
to the nodes at either end of the link.
To aid in recovery from link failures, the network can be

installed in a star-shaped configuration as described by
Saltzer and Pogran. 7 A star-shaped configuration is elec-
trically a ring but topologically a star; in such a configura-
tion, each subring, or loop, is brought back to a central
point. The star configuration permits the loop containing
the failure to be switched out so that operation can be
restored to the rest of the network.
Good network maintenance and troubleshooting

facilities are essential to the success of a large local net-
work. The star-shaped ring has been crucial to managing
the Domain network. Presently, the network at Apollo
Computer corporate headquarters contains over 240
nodes; in general, more than 200 of these nodes are active
at any one time. Nodes belonging to every facet of the
company are attached to the same ring, including those in
the research and development, finance, marketing, cus-
tomer service, and manufacturing departments. Without
the ability to make the almost continual network changes
inherent to a large network (moving old nodes, adding
new ones, and adding new network subloops), network
maintenance would be much more difficult.

Architectural features

A predominant feature of the Domain system is its abili-
ty to run very large application programs written in For-
tran, C, or Pascal. The system supports a full 256M-byte
virtual address space so that applications that exist on
mainframes or superminicomputers can be converted to
the Domain system with minimal effort. Figure 3 shows
the relationship between user and application programs;
the naming conventions for programs, files, etc.; the
distributed network of workstations; and the computing
that occurs in the user's local machine.

This figure can be subdivided into quadrants. The left
hemisphere represents physical entities: application pro-
grams, the actual network, and physical memory. The
right hemisphere depicts virtual entities: file name space,
object address space, and virtual address space. Similarly,
the lower hemisphere illustrates entities that are local to a
single node: physical memory and the total virtual memory
within a single machine. The upper hemisphere represents
entities that are global to the entire network: the network,
object address spaces, and distributed file name space.
The position of the user and application programs in the

upper hemisphere indicates that the Domain system pro-
vides a completely distributed view of programs, files, and
shared resources. Moreover, this view is fully transparent
to both users and application programs, giving them ac-
cess to systemwide resources in the same manner as cen-
tralized systems.

Object storage system. The structure of virtual memory
is based on the object: 32-bit, byte-addressable virtual ad-

60 IEEE CG&A

dress spaces accessible from anywhere in the network. Ob-
jects are generalizations of data files, executable modules,
interprocess communication (IPC) mailboxes, bit maps,
directories, and other system entities.
The system assigns to each object a 64-bit, unique iden-

tifier string, or UID, which it creates by concatenating the
unique node ID of the node generating the object with a
time stamp from the node's timer. The UID is the mech-
anism by which the object is located. See Leach et al. 8 for
a complete description of the use of UIDs in the Domain
distributed file system.
What are the advantages of object-based systems? In

conventional timesharing systems, separate mechanisms
are frequently used to implement similar system functions.
For example, programs can be managed by a paging
system, whereas data files are accessed and handled
through a file system. Thus, two distinct system mecha-
nisms exist to handle similar system entities.

In contrast, the Domain system deals exclusively with
objects, without regard to their physical location on the
network or their specific function (program, file, etc.).
The object abstraction simplifies the overall design of the
system by casting all system entities into a common
framework and managing them with a common set of
mechanisms.

Objects are very large (over four billion bytes), linear
virtual address spaces. Only the allocated, nonzero por-
tion of an object's address space actually exists on a
physical disk; these portions are managed by the disk
management system. Allocation can be sparse; that is, the
allocated regions of an object can be arbitrarily frag-
mented throughout the address space and need not be con-
tiguous.
At any given time, the permanent storage for an object

is entirely on one node; thus, for every object there is a

particular node that acts as the object's "home node."
This node is the site of all operations performed on the ob-
ject.
Each distinct type of system resource is controlled by a

type manager. Type managers exist for disk files, mapped
objects, serial I/O lines, IPC mailboxes, and other object
types. Each object has a type UID that identifies which
type manager is to handle it.

User programs gain access to system resources by calling
the stream manager, the system's device-independent I/O
mechanism. When called, the stream manager determines
the object's type and redirects control of the operation to
the proper type manager. Stream manager operations are
similar to Unix system calls for manipulating files and
peripherals, as described by Ritchie and Thompson. 9

Translation. The relationship between virtual and
physical memory in a single node is maintained by memory
management hardware designed to enhance the central
processor to the level of a mainframe computer. Memory
management functions include

* dynamic translation of virtual addresses to physical
addresses,

* pagination of physical memory into 1024-byte pages,
* read, write, and execute protection,
* collection of statistics on page usage, and

* transparent support for page faults that occur in vir-
tual memory systems.

Paging. The system allocates objects in units of
1024-byte pages. Each node has a paging server process
that handles remote requests to read and/or write pages of
objects on that node. When a page belonging to an object
is referenced by another node on the network, the paging
server dynamically transfers, or demand pages, it to the re-
questing node. Since the local area network operates at
12M bps, it can transfer a page to any node on the network
in less than a millisecond-a small delay compared with
the access time of moving-head devices.
When combined with adequate virtual memory man-

agement hardware, this underlying network paging system
can provide a user process with a global view of objects
residing in the network.

Mapping. A unique aspect of the Domain system is its
network-wide single-level store mechanism. With SLS, a
program gains access to an object by requesting (via the
object's UID) that it be mapped into its address space.
Subsequently, the object is accessed with ordinary
machine instructions using virtual memory demand pag-
ing, as described in Leach et al. 10 Multics, described by
Organick, I I and IBM System/38, described by French et
al., 12 are examples of the use of the SLS concept in cen-
tralized systems; Domain is the first application to a
distributed system.

This mapping between object space and process address
space is the fundamental primitive of the Domain architec-

Figure 3. Relationship of the system resources in the Apollo Domain:
physical, virtual, local, and network. The user and applications pro-
grams are in the upper hemisphere where they have a completely
distributed view of these resources.

April 1984

. NAMING

III
USER/

APPLICATION A
PROGRAMS ALLOCATION

OBJI
(3

ETWOR

DEMAND MAPPI
PAGING

'STRANSLATION N

PHYSICAL VIRTUAL
MEMORY MEMORY

PHYSICAL VIRTUAL
-r

61

ture; it provides a single-level storage view of programs,
files, and other system entities. Objects can be mapped to
process address space with various protection rights, they
can be shared among multiple processes, and they can be
extended by CPU instructions that simply write into unal-
located regions.
Mapping proceeds independently of whether the object

is local or remote. Thus, the single-level store mechanism
provides a uniform, network-transparent way to access
objects. As a result, the user can execute a program
without being concerned about its location or the location
of the files it uses. For example, it is possible to execute on
node A a program that resides on node B, reads input
from node C, and creates output on node D.

Together, the network paging system and extensive
memory management hardware provide this simple and
elegant mechanism to manage network global objects. Ex-
perience has shown that this network virtual memory
system eliminates the need for many conventional network
functions, such as file transfer protocols. It also allows
users to share single copies of programs and data files.

Concurrency control. The Domain single-level store im-
plementation is distinguished from single-level store on a
centralized system by its need to handle multiple main
memory caches, one for each node on the network. This
need leads to the problem of synchronizing the caches,
that is, to locate and retrieve the most up-to-date copy of
an object's page on a page fault, and to avoid using stale
pages (pages still in one node's cache that have been
recently modified by another node).
One objective of synchronization is to give programs a

consistent view of the current version of an object, since
there can be many updaters. (See Kohler13 for a survey.)
A second objective is to offer a synchronization algorithm
that is simple and that requires a small database, because
as part of the implementation the database must be per-
manently resident in main memory.

Figure 4. Multiple windows allow interaction with, and con-
trol of, several concurrently executing tasks.

These objectives appear, for practical purposes, to be
mutually exclusive. Hence, the SLS implementation
guarantees neither consistency nor the use of the current
version. Rather, a more relaxed condition is met whereby
applications are provided with operations and information
from which they can build mechanisms that make the
stronger guarantees. In addition, an application can use
the virtual memory provided by the SLS and thereby gain
a measure of freedom from the aforementioned con-
straints on its size and the size of its database.

Concurrency control in the Domain architecture is
based on each version of an object; the system detects a
concurrency violation when an attempt is made to use
more than one version of an object. To implement
concurrency-violation detection, each object has a time-
stamp version number that records the time the object was
last modified. This value is maintained at the object's
home node and is the means by which remote reads and
writes are synchronized.

Using object version numbers for concurrency control
leads to the following conditions:

(1) Concurrency violations can only occur in multinode
situations. If an object is used by only one node, that node
is the only source of version number changes and hence
always sees a consistent view of the current version.

(2) Even in multinode situations, concurrency violations
will not occur if an object is used as read-only; all nodes
will have the same version number and see the same ver-
sion.

(3) If no concurrency violations occur, all users of an
object see a consistent view of the object. However, even
then, some could see an out-of-date version. Therefore, if
multiple objects are used, there is no guarantee of interob-
ject consistency.

(4) An object must be read before being written; thus, if
two nodes read from the same version of an object and
then each writes the object, the first writer will update the
version number, causing the second writer to get a concur-
rency violation. However, if the nodes' read/write pairs
can be serialized, no violations will occur.

The Domain system also provides a readers/writers
locking mechanism at the higher level; however, users are
free to construct their own synchronization mechanism at
this level if they do not wish to use Domain's.

Naniing. Since objects can be demand-paged from
remote disks at rates comparable to local disks, it is
desirable to present to the user a homogeneous view of the
collection of objects, independent of their physical loca-
tion. To meet this objective, the Domain system allows
users to reference objects by means of a network-wide,
hierarchical name space whose structure is similar to file
structures found in modern timesharing systems. All pro-
grams, files, etc. are referenced across the entire system
using a name space that consists of a multilevel directory
tree, with directories at the nodes and other objects at the
leaves. The user refers to an object with a text string, or
pathname. The Domain system's naming server then
translates the pathname into the object's UID.

Experience has shown that a user's local naming server
can efficiently translate object names anywhere on the net-

IEEE CG&A62

work without perceptible response-time delays. The
reason for this is that the directory structure is itself im-
plemented as a collection of objects so that they can be
mapped efficiently into the naming server's address space
and referenced as if they were local.

Therefore, the designers implemented a system in which
each user sees a distributed database of objects with the
same appearance and access-time efficiency as that of a
centralized, timesharing system. The performance of the
local area network, together with the memory manage-
ment hardware, provides the basis for this view.

The user environment

Within each node, the user environment is managed by
a process known as a display manager. The display
manager allows the user to view and control separate ac-
tivities both concurrently and independently by dividing
the screen into windows whose size, shape, and placement
are under user control. (See Figure 4.) Windows are
viewports to different types of "pads," similar to the ones
invented by Lantz and Rashid. 14 An edit pad displays an
object that the user can modify, given the proper access
rights. Input and transcript pads provide a process with a
virtual terminal; the process writes output and reads
keyboard input from these pads. Multiple windows can be
overlaid on top of each other, completely or in part, so
that the user environment is analogous to a desk upon
which various pieces of paper are placed, except that the
"pieces of paper" are actively performing some function
or displaying some graphic output in a window.

Multiple processes can run concurrently, and each pro-
cess sends its output to its own pad. User programs can

also use display manager windows or the entire display for
graphics operations.
The integration of multiple windowing and the Domain

virtual memory system means that users can simultaneous-
ly perform design, analysis, development, and com-
munication functions in a significantly larger environment
than that possible with conventional stand-alone worksta-
tions. In addition, the Domain system offers a related set
of tools that support technical professionals in their day-
to-day activities. These generic service tools include:

(1) A calendar utility that can automatically schedule,
confirm, and signal the onset of daily, weekly, and month-
ly events. (A calendar display is shown in Figure 5.)

(2)A highly visual electronic filing cabinet that manages
"files," "folders," and "drawers."

(3) A mail program to send, reply, and forward to one,
several, or a mailing list of recipients. (Figure 6 displays a
typical mail program.)

(4) A document editor/processor that incorporates and
expands upon the features associated with traditional
word processing systems. It permits interactive manipula-
tion of multiple-font text and graphics. (See Figure 7 for
an example of a document editor.)

(5) A report editor/generator that allows a user to
manipulate rows and columns of a spreadsheet and per-
forms mathematical functions such as adding up columns
of numbers and calculating percentage increases from one
row to the next.

Together, these generic service functions maintain the
traditional terminology of the workplace-calendars,
worksheets, drawers, writing pads, and file cabinets-
while providing a highly sophisticated and integrated set of
electronic tools and services.

Figure 5. Calendar utility display.

April 1984 63

The Domain user environment also offers Aux, a Unix
System III-compatible software environment with
Berkeley 4.2 enhancements. Aux is fully integrated into
the Domain user environment. The Aux environment
allows Unix users unfamiliar with the Domain system to
use the Unix shell, run Unix utilities, and receive the ex-
pected responses to Unix key sequences. In short, users
feel as though they are using a Unix system, and they can
develop expertise with the Domain system at their own
pace.

Users can intermix Domain and Aux programs, even
within a single pipeline, without any awareness of the pro-
grams' origins. Because the Aux and Domain user en-
vironments are fully integrated, Aux and Domain pro-
grams can be executed from either Aux or Domain
environments, and files written in Domain and Aux en-
vironments can be read in either environment. Thus, Aux
provides the user with the benefits of the Unix software
and user environment on a dedicated computer that sup-
ports high-performance network and raster graphics
capabilities unavailable on most other Unix systems.

Diskiess nodes

The Domain architecture makes it relatively easy to im-
plement diskless nodes (nodes that can run without a local
disk). Once a diskless node is successfully running the
operating system, it has full access to the distributed file
system. Thus, the only extra support needed for diskless
nodes is a bootstrapping mechanism.
When a diskless node is first powered up, it runs soft-

ware stored in nonvolatile memory. This software sends a
broadcast packet to the diskless node bootstrap service. A
node that is willing to act as a partner for diskless nodes
keeps a data file that specifies which nodes it will bootstrap
and runs a process that monitors both the data file and the
bootstrap service. (Since partnership requires a significant
resource commitment, not all nodes may wish to be part-

Figure 6. Mail program display.

ners; thus, a node must explicitly declare its availability for
partnership.)

Partner nodes supply an operating system environment
to the diskless nodes they boot. This environment includes
a system paging file, hooks into the network name space,
and a directory to store the names ofnode-specific objects.

Eventually, one or more servers reply to the diskless
node's request, and a node is selected to be the diskless
node's partner. A copy of the operating system image is
sent to the diskless node, followed by the pieces of the
system environment. Once bootstrapped, diskless nodes
make requests for remote objects (which for diskless nodes
include their environment objects) in the same way as
nodes with disks.

Remote use of resources

The first implementation of the Domain virtual memory
system made no distinction between the paging demands
of local and remote processes. Consequently, local users
constantly competed with remote users for use of their
local physical memory. Remote users would steal pages
from the local user's process working set; as a result, the
local user's paging rate would skyrocket. The remote user,
however, received little benefit, since only infrequently
used pages existed in the local node's memory.
The system has been revised to allow a local user to

restrict the number of physical memory pages available for
remote use. Experiments have shown that limiting the size
of the pool to a small fraction of the total available
physical memory-for example, five percent-has dramat-
ically reduced the working set pressure from remote users
yet has left them with little or no performance impact.
Another aspect of resource competition-for the use of

a disk-seems an inherent consequence of the ability to
share objects on the disk. However, the ring controller
hardware can be used to allow a node to refuse all requests
for service and still remain able to receive replies to its own
requests. Therefore, if users desire, they can use the net-
work's facilities without making any of their own
available.

Single-level store-some conclusions

There can be only two fundamentally different ways to
perform computations in a distributed environment.
When a computation and its data are not physically co-
located, the computation can be moved to the data or the
data can be moved to the computation. The first method
corresponds to a message-passing model of distributed
computing; the second method corresponds to a network-
transparent data access model. The message-passing
model leads to applications based on an interprocess com-
munication facility, while the data access model leads to
applications built on facilities such as Domain's single-
level store.
Which model is better suited to the construction of

distributed applications? The Domain architecture has
pushed the network single-level store concept to the limit

IEEE CG&A64

and after almost three years of experience can provide
some data for general observations on those limits.
Even though Domain's implementation specifically

focuses on the efficiency of network paging, there are
cases where IPC can be more efficient; the naming server is
an example. Using the SLS technique, the naming server
must send three messages to look up a name in a directory:
one message to lock the directory, one to read it, and one
to unlock it. Using the IPC model, the naming server has
the potential to carry out the lookup sequence with one
message.

Network-transparent access to data can also complicate
the problem of object encoding and abstraction. For ex-
ample, Domain's network registry uses a simple object-
replication technique to store a small database used to
identify network users for access control purposes. This
database has a manager that abstracts from representa-
tional details; however, there is one manager per node,
bringing about a network-wide knowledge of the
database's internal structure.
As a result, the structure is difficult to modify, since any

change involves synchronizing installation of the modified
manager on each node. If the manager ran only on the
nodes storing the registry, and if all other nodes used IPC
to communicate with the manager, installing new versions

| TeETLcOI ^ tIott i'lEE h 1

TI-i tiE -BT e,F . - E. TLCF,r- tlf-E

l.ton, I..,,-"

p, lZort a ttnl thl, 5md asP-
,r tr-lutced to less than 2--atT
The lowv power reqxiirement o-f ti-
BTL5k7f makes, a t-taI Ivbtite i v
po -ered zvstern feasible.

T he sy sten. conEstructed f-' tl--*
d:eniocnztr'atior, U5eE a BTLS6'S f o,

zss t.rage. a CM03S woersion .-f 'h,
Apollo cent-il processor. a batter-~
tosrctern ina I ,and a po-ver

CDarxtrthat alloviz. the BTI_5k-5 t.-

:$:81 2~L._S4 n 1-is

::-4HZ': L4.84H:

frco - r

Modifications
No nodif-atio-. al-e n--ted to.

the A-pot11 CPU the nt-ot- y
-r the serial port for the ter,iiri-l
Howe',er thlree mod if I.ati-n at-

of managers would be considerably simpler. This example
shows that the IPC model is required to achieve effective
information hiding in a distributed environment; data
abstraction alone is insufficient.

Despite this example, there are many cases where an ap-
plication's set of demands leads to the choice of SLS over
IPC as an implementation tool. To make SLS preferable,
the application must meet the following criteria:

(1) It requires a significant amount of data but simple
synchronization, so that synchronization overhead is small.

(2) Its data structure semantics are very close to the
representation, so that it is not necessary to confine
knowledge of the representation to only a few nodes.
Some examples are text files, which are often logically ar-
rays of bytes, both conceptually and representationally,
and executable program formats, which are defined for
the most part by the CPU's instruction set.

(3) Its computation must not need to be trusted (for
protection purposes) by other nodes. Trust cannot be
achieved because, with current techniques, trust depends
on the computation being moved to the data.

When these criteria hold, the limitations to single-level
store described earlier do not apply; on the other hand, if
the criteria do not hold, an IPC-based application is

eeelt. Fl-l 1--, E- 155 BLU_ART
ae1por1Se-ed to interf-fc he

ETL-5t7- Fit-zt. the BLUART mo,dule
E1-i''l-d1 e1 lperatez .'t I200 B511d onlvI".

..I-l,-h IE tc v E. for the ETL5F7 I. Tc
Ithe problem - added a

s$Vitch to the boat-cl that at lows the
Baic rAte clock signal to come frolm
either the 1O:0 Baud soulce or ft-om
an] exte,nazel _-Olrce on rln 4 of the
E I A,--ltl ex ter ia

cic-k1xl1! ~ e >-,s e
I.!z1tl) 5hr ineI the

JeI re , met i Ito
it rn- - I Flh
I'e i- ts*he
Re.TL-. e-_s__current
1:-'°p op4t |e =| Ci 5 this

-dfi1l r m T he

L77 TART is

nn-ea k " o n
the --ell _ r neededi

*o Rstl l wl-ol~~ler
It ing the
U ARTZ-_T _ foiP t3vo

hil-cte _ ~~~~tofoi-ce
theUe-t i~~~: bv tle

"'reil nce tlhis
11-d1lf l- k can be
g -er -te er.-e, OFF controll
bv zettI LUART.
e):la SItI .,f 1enF" f ,. lS1

4

e

TP_ g Fliapg
BLUART lleFag
t wplllIto tll

fD-lz Flskl i iE -sailible or, TP11I A
plece of misslply -onected
bet veen TPI I of the BLUART and the

Page 3

Figure 7. The document editor handles multicolumn, multifont, mixed text and graphics with justification, headers,
footers, autowrap, and automatic line spacing capabilities.

ILT567:r irc i t [-- r ibt or, FEll ll

April 1984 65

needed. SLS is useful because a large number of applica-
tions do have the simpler requirements that SLS can
satisfy, and because SLS provides the following two advan-
tages: automatic, system-managed caching of frequently
used programs and data; and a simpler program model
whereby programs access data using ordinary string, record,
and array access provided by the programming language in-
stead of extra-lingual, message-passing methods.

User benefits

The style of computing suggested by the Domain system
has numerous advantages compared with traditional
forms of computing such as intelligent terminals linked to
superminicomputer timesharing systems. First of all, each
workstation is potentially a stand-alone system capable of
solving large, complex problems. The entry cost of such a
system is considerably lower, since no central components
need to be purchased. The system can be expanded in-
crementally to a very large scale; each increment is relative-
ly small, so that at any point the system optimally fits the
client's needs.

In addition, users enjoy a predictable and constant level
of performance that allows them to schedule their time
without regard to computer availability. Although the per-
formance level is high, gateway functions to large main-
frame computers can be added to facilitate the optimum
balance of work loads. Note, however, that price/perfor-
mance (instructions per second per dollar) are generally
superior on these smaller Domain nodes.

Finally, given the advantages described above, the Do-
main architecture provides a common environment or
substrate upon which the user can provide higher func-
tions, such as the integration of CAE and CAD with
CAM.

The Domain system is indicative of many trends in
computer-aided design and engineering that will become
prevalent during the 1980's. The Domain system integrates
mainframe computer capability with high-performance
local area networking and raster graphics capabilities and
has a cost per user that is well within reach of engineering
and graphics applications.-

References

1. G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G.
Rudisin, and G. Thiel, "LOCUS: A Network Transparent,
High Reliability Distributed System," Proc. Eighth Symp.
Operating Systems Principles, Dec. 1981, pp. 169-177.

2. E. Lazowska, H. Levy, G. Almes, M. Fischer, R. Fowler
and S. Vestal, "The Architecture of the Eden System,"
Proc. Eighth Symp. Operating Systems Principles, Dec.
1981, pp. 148-159.

3. L. Svobodova, B. Liskov, and D. Clark, "Distributed Com-
puter Systems: Structure and Semantics," tech. report
LCS/TR-215, Laboratory for Computer Science, MIT
Press, Cambridge, Mass., Mar. 1979.

4. R. L. Gordon, W. Farr, and P. H. Levine, "Ringnet: A
Packet Switched Local Network with Decentralized Con-

trol," Computer Networks, Vol. 3, North Holland, New
York, 1980, pp. 373-379.

5. M. V. Wilkes and D. J. Wheeler, "The Cambridge Digital
Communication Ring," Proc. LocalArea Comm. Network
Symp., May 1979, pp. 47-61.

6. J. H. Saltzer, D. D. Clark, and K. T. Pogran, "Why a
Ring," Proc. Seventh Data Comm. Symp., Oct. 27-29,
1981, pp. 211-217.

7. J. H. Saltzer and K. T. Pogran, "A Star-Shaped Ring Net-
work with High Maintainability," Proc. LocalArea Comm.
Network Symp., The Mitre Corp., Bedford, Mass., May
1979, pp. 179-190.

8. P. J. Leach, B. L. Stumpf, J. A. Hamilton, and P. H.
Levine, "UlDs as Internal Names in a Distributed File
System," Proc. First Symp. Principles ofDistributed Com-
puting, Ottawa, Canada, Aug. 1982, pp. 34-41.

9. D. M. Ritchie and K. Thompson, "The UNIX Time-sharing
System," Comm. ACM, Vol. 17, No. 7, July 1974, pp.
365-375.

10. P. J. Leach, P. H. Levine, B. P. Douros, J. A. Hamilton,
D. L. Nelson, and B. L. Stumpf, "The Architecture of an
Integrated Local Network," IEEE Journal on Selected
Areas in Comm., Nov. 1983, pp. 842-856.

11. E. 1. Organick, "The Multics System: An Examination of
Its Structure," MIT Press, Cambridge, Mass., 1972.

12. R. E. French, R. W. Collins, and L. W. Loen, "System/38
Machine Storage Management," IBM System/38 Technical
Developments, IBM General Systems Division, 1978, pp.
63-66.

13. W. H. Kohler, "A Survey of Techniques for Synchroniza-
tion and Recovery in Decentralized Computer Systems,"
Computing Surveys, Vol. 13, No. 2, June 1981, pp. 149-184.

14. K. A. Lantz and R. F. Rashid, "Virtual Terminal Manage-
ment in a Multiple Process Environment," Proc. Seventh
Symp. Operating Systems Principles, Dec. 1979, pp. 86-97.

David L. Nelson is a founder of Apollo
Computer, Inc., and has served as vice
president of research and development
since the incorporation of Apollo in
February 1980. From March 1977 to
January 1980, he served as director of
research at Prime Computer, Inc. Prior to
that, he was manager of research and
development at Digital Equipment Cor-
poration.

Nelson holds a BS from the University of Wisconsin and a PhD
from the University of Maryland.

Paul J. Leach joined Apollo Computer,
Inc., in 1980 to design the Domain system
architecture and operating system. From
1977 to 1980, he was in the Research

i Department at Prime Computer, working
- on computer architecture and operating

systems. From 1979 to 1980, he was also an
adjunct faculty member of Boston Univer-
sity. Leach did his undergraduate work in
electrical engineering and computer science

at the Massachusetts Institute of Technology.

The authors' address is Apollo Computer, Inc., 15 Elizabeth
Drive, Chelmsford, MA 01824.

IEEE CG&A66

