
Open Implementations and Metaobject Protocols

Gregor Kiczales, Andreas Paepcke

Notes from an earlier tutorial that shows how to use OO programming techniques to support Open
Implementation of programming languages. Many of the concepts in here apply to other kinds of open
implementation as well.

NOTE: THIS DOCUMENT CONTAINS WORK IN PROGRESS.

© Copyright 1994, 1995, 1996 Xerox Corporation. All rights reserved.

Tutorial.book : Preamble.frm iii Sun Sep 8 16:44:46 1996

iii

Open Implementations

and Metaobject Protocols

Gregor Kiczales

Andreas Paepcke

Copyright Xerox Corporation, 1995, 1996.

Tutorial.book : Preamble.frm iv Sun Sep 8 16:44:46 1996

iv

Tutorial.book : TutorialTOC.doc v Sun Sep 8 16:44:46 1996

v

Introduction 1

TinyObjects: A Simple Object System 27

But I Wish I Knew… 55

But I Wish I Could Get At… 109

But I Wish It Had This Extra Feature… 139

But I Could Make It Run Better for My Application… 203

And I Want It All to Be Fast! 267

Summary and Directions 303

List of Slides in Presentation Order 315

Contents

Tutorial.book : TutorialTOC.doc vi Sun Sep 8 16:44:46 1996

vi

Tutorial.book : Chap1.frm 1 Sun Sep 8 16:44:46 1996

Chapter 1 Introduction

Tutorial.book : Chap1.frm 2 Sun Sep 8 16:44:46 1996

2 Open Implementations and Metaobject Protocols

The work presented in this book is based on the observation that much of
the complexity in current application programs comes from the application
programmer having to ‘code around’ deficiencies in the underlying operat-
ing system, programming language, object system or other substrate soft-
ware. This happens when the application programmer would like a
specific feature or behavior1 that the substrate does not provide.

1. Throughout, we use the term 'behavior', instead of 'semantics', to refer to the “computa-
tion” or activity that results from executing a program. There are three reasons for this
choice. First, as a word of ordinary English, 'behavior' is more accurate and descriptive
of what we have in mind. Second, the term 'semantics' has quite different connotations
in some fields adjacent to computer science, such as artificial intelligence and cognitive
science, which can lead to confusion. Third, in philosophy and logic, 'semantics' is pri-
marily used to name a relatively abstract relationship between a symbol system and the
(usually external) domain that its symbols are <about>. In the case of an ordinary pro-
gram, such as an elevator controller, this would include the (non-effective) relation
between the data structure representing the number of people on the elevator, for exam-
ple, and the actual people taking the ride. Similarly, in an object system, a philosopher
would be most likely to use the term “semantics” to refer to the relation between the
objects inside the system, such as an object for flight-133 in an airline reservation sys-
tem, and the real-world flight to which that object was intended to correspond. Since
we believe that computer science would do well to pay more direct attention to abstract
relations of this sort -- i.e., to relations between particular programs and their real-
world subject domains -- we are at least tempted to use the term 'semantics' broadly
enough to include such relations within its scope.

Executive Summary
A Simple Premise

Substrate systems—like programming languages, operating
systems and object systems—that are flexible and tailorable
are more useful than ones that are not.

Being open to programmer inspection and adjustment
means they can meet a far wider range of needs.

This means applications will be less complex, because
programmers can fix some of the problems themselves.

Tutorial.book : Chap1.frm 3 Sun Sep 8 16:44:46 1996

Introduction 3

But this book does not propose that substrate software should just “have
more features to please more programmers.” Instead, it suggests that sub-
strates should be open in a way that allows programmers access to and
control over the substrate’s implementation in a way that allows the pro-
grammer to tailor the substrate to the needs of a particular application.
This is called open implementation.

Naming conventions.1

1.
1. Noun-noun compounds should be styled open when their elements are stressed inde-
pendently; they may be styled closed only when stressed as a single word (as with
“database”, “mastermind”, “dogsled”; contrast “data flow”, “master key”, and “dog
biscuit”'.)
Open compounds are hyphenated when used as modifiers before a noun:

 master-key impressions data-flow diagram
 dog-biscuit packaging base-interface specifications

2. Words formed with the prefixes pre-, intra-, extra-, super-, sub-, ultra-, meta-, etc. are
usually spelled solid, except in the following cases:
 a. Second element capitalized or a figure: anti-Semitic, pre-1945
 b. Second element more than one word: non-English-speaking
 c. To distinguish homonyms: un-ionized, re-present
 d. Optionally, when both the prefix and a noun stem bear independent stress (anti-art,
anti-collision), particularly when the closed form would create a distracting sequence
of vowels (as in meta-analysis, supra-auricular, meso-appendix, meta-arthritic; but
either meta-igneous or metaigneous)

Tutorial.book : Chap1.frm 4 Sun Sep 8 16:44:46 1996

4 Open Implementations and Metaobject Protocols

While many would agree that inflexible substrate software does cause
problems for application programmers, the thought of open implementa-
tion raises concerns, especially since it seems that the design and imple-
mentation of closed substrates is already difficult enough. Questions arise
such as: Won’t substrates with open implementations require designers to
anticipate all the possible extensions a programmer could want? Does
open implementation violate modularity and encapsulation? How will the
implementor be able to make an open implementation robust? Will this be
such a powerful tool that application programmers will be able to
“machine gun themselves in the foot?”

This book shows how these concerns can be addressed, and how the reduc-
tion in application complexity more than makes up for the additional care
required in substrate design.

Topics Addressed (1/4)

Won’t that make substrate systems

• harder to design?

• harder to implement?

• more prone to misuse?

These problems can be overcome, and the reduced
complexity of applications makes it worthwhile.

Tutorial.book : Chap1.frm 5 Sun Sep 8 16:44:46 1996

Introduction 5

One reason why the effort is worthwhile is that each substrate tends to
support many applications. In addition, the techniques introduced here
will be applicable to a wide variety of substrate systems.

Topics Addressed (2/4)

Processes and technologies supporting the design and
use of open implementations of programming languages,
object systems, operating systems, databases and other
substrate software.

Tutorial.book : Chap1.frm 6 Sun Sep 8 16:44:46 1996

6 Open Implementations and Metaobject Protocols

But isn’t an object-oriented implementation language all you need for this?
Well, not quite. Several other aspects are indispensable as well, and they
will be addressed:

• A design process and a way of thinking about the design of substrates
with more flexible implementations.

• An effective strategy for partitioning the substrate functionality, for
organizing the interactions between the system components, and for
enabling intervention without making substrate usage cumbersome
and slow.

• A variety of supporting technologies that are independent of object-
oriented programming.

Topics Addressed (3/4)

But isn’t that just OOP?

OOP is one technology that helps. But more is involved:

• A methodology

• Metaobject protocols: one way of using OOP

• Non-OOP techniques: partial evaluation, reflection...

Tutorial.book : Chap1.frm 7 Sun Sep 8 16:44:46 1996

Introduction 7

The most detailed parts of this book use an object system as an example
substrate to make tailorable. In this case, that object system happens to be
bound to a C-like language, but that is coincidental. It might instead be
used to serve as the data model of an object-oriented database. The lan-
guage as such is not of concern here. Instead, the focus will be on the object
system: its classes, methods, inheritance behavior, etc.

Example substrates other than object systems, such as operating systems or
distributed computing, will be mentioned occasionally, and the reader is
invited to draw parallels to them as the tutorial moves along. The technol-
ogies that will be introduced are not limited to object systems, but address
issues of reusability and flexibility in general.

Topics Addressed (4/4)

The primary example will be a simple object system. The
collection of techniques will be used to open its
implementation and make it more flexible for a client
programmer.

But the intuitions, processes and techniques that will be
discussed are applicable in other areas, such as operating
systems, window systems, databases and other kinds of
software systems.

Tutorial.book : Chap1.frm 8 Sun Sep 8 16:44:46 1996

8 Open Implementations and Metaobject Protocols

The open implementations approach involves a reapportioning of respon-
sibility among the parties involved with substrate software: the designer,
the implementors, and the programmer who builds on top of it.

As such, a number of issues will be on the table for examination, including
the roles of the designer, implementors and programmer, as well as their
work products, the documented design, the implementation, and the pro-
grams that use the substrate system.

The figure shows a traditional black-box substrate with an interface for cli-
ent programmers to program to—with all the limitations the interface
design and the particular implementation places upon him.

As the story of open implementation unfolds in this book, a second inter-
face will be added on the side of the black box.

Roles and Work Products

Designer

Implementors

Client
Programmer

Tutorial.book : Chap1.frm 9 Sun Sep 8 16:44:46 1996

Introduction 9

It is specified by the same designer who specifies the traditional, base level
interface. The client programmer still programs mainly to the base inter-
face, but he can also write separate programs to the new interface to make
the substrate implementation or its base level interface more suitable to his
particular needs. This in turn simplifies his programs.

The client programmer thereby gains some of the power and responsibility
traditionally reserved for the designer and implementors. The challenge to
this approach is that the substrate needs to stay robust and efficient.

Separation of concerns?

Increased Programmer Access

Client
Programmer

A new kind of interface allows the client programmer to
access and modify implementation and design.

Designer

Implementors

Client
Programmer

Tutorial.book : Chap1.frm 10 Sun Sep 8 16:44:46 1996

10 Open Implementations and Metaobject Protocols

As you read, try to think about your own experiences and frustrations.

As a preview of the issues the book addresses, the following pages present
examples of the kinds of problems programmers currently have with
closed object systems. These examples are presented in the form of a sim-
plified dialog between a programmer on the one hand, and the implemen-
tors on the other. This kind of dialog is a driving force throughout the
book.

Getting Down to Work

 Every object system is inadequate somewhere.

Tutorial.book : Chap1.frm 11 Sun Sep 8 16:44:46 1996

Introduction 11

Here is an example where the programmer simply wants access to...

This is a common enough request in the domain of object systems that
many implementations include some built-in tools for exploring these
questions. But as this example suggests, unless these facilities are part of
the documented standard, any application programmer use of them will
not be portable across implementations. Typically, this functionality is left
out because it is too complex to burden all implementors with.

Programmer Questions (1/4)

…and the Responses They Get

Dear Implementors,

How can I find out which classes inherit from two given classes? Or
which method will run in a given case? Or which classes define a
given slot name?

Dear Programmer,

A special feature of our implementation is that it includes a nice
graphical browser which can be used to explore these kinds of
questions.

Tutorial.book : Chap1.frm 12 Sun Sep 8 16:44:46 1996

12 Open Implementations and Metaobject Protocols

In this example, the programmer is asking for a simple feature which he is
surprised to discover has not been provided. He learns that the object sys-
tem designer did not include it because there are too many different “rea-
sonable” behaviors for copying objects.

This is particularly frustrating since most programmers have a particular
behavior in mind, but they find it awkward or impossible to implement
without access to implementation internals. Without an open implementa-
tion, the object system implementors can either arbitrarily decide to use
one of the copy semantics, thereby making the system more amenable to a
few users, but invoking a false sense of generality, or they can leave the
functionality out altogether, making the system equally unpleasant for all
users.

Notice that the programmer‘s question is directed at the implementors,
even though it is more about the design than the implementation. This
happens in practice because most programmers do not have access to the
designers of the systems they use—only the vendor or, at best, the imple-
mentors do.

Programmer Questions (2/4)

…and the Responses They Get

Dear Implementors,

What is the name of the procedure for copying objects? I can’t find it
in the manual.

Dear Programmer,
There is no copy procedure because the appropriate type of copying
is often context-sensitive. Sometimes a shallow copy is needed,
sometimes a deep copy. Often a combination is the right choice.
Because there is no ‘one right way’ to copy objects, the designers
chose not to include such a mechanism.

Tutorial.book : Chap1.frm 13 Sun Sep 8 16:44:46 1996

Introduction 13

This is another example where the programmer wants an additional fea-
ture, although arguably a trickier one than the copy functionality. But
because such powerful callbacks have been difficult to manage and imple-
ment efficiently, ***

Programmer Questions (3/4)

…and the Responses They Get

Dear Implementors,

Is there a hook or callback that is always called when a slot is
altered? I would like to have one slot in my objects be updated
whenever any of the other slots is set. I plan to use this to implement
a history mechanism.

Dear Programmer,

There is no such feature in the system. It would be hard to imple-
ment, so it probably isn’t really what you want.

Tutorial.book : Chap1.frm 14 Sun Sep 8 16:44:46 1996

14 Open Implementations and Metaobject Protocols

This one ***

This brings up the question of whether this person should simply use
Eiffel. But that is not a solution, because even though there might be a sin-
gle major mismatch of a system to one’s needs, a wholesale switch to an
alternative is not necessarily the best, or even a possible answer.

Programmer Questions (4/4)

…and the Responses They Get

Dear Fellow Programmers,

Is there an implementation of TinyObjects that has an option that
makes it do Eiffel-style inheritance?

Dear Programmer,

No. Even if they did, using such an implementation-specific feature
would make your code non-portable. It probably isn’t what you want.

Tutorial.book : Chap1.frm 15 Sun Sep 8 16:44:46 1996

Introduction 15

***Need example for performance tuning.

If a programmer likes nothing about a substrate, he should just use another
alternative. But what the substrate designer (and even more often the ven-
dors) hears is “Gee, I like most of your system. But there is this one thing
that is really mismatched to my needs.”

These examples showed several categories of changes to implementations
that programmers tend to ask for. More examples will come up in the
chapters ahead and will categorized to a much finer granularity.

Client Programmer Frustration

Functionality
• missing

• wrong

Performance
• space

• time

Tutorial.book : Chap1.frm 16 Sun Sep 8 16:44:46 1996

16 Open Implementations and Metaobject Protocols

The answers often make sense from the designers’ and implementors’
points of view if their systems are monolithically constructed and are used
by a wide audience for many purposes.

The problem is that if the application programmer really needs a piece of
functionality, he will implement it somehow. The result are user programs
cluttered with partial, often sub-optimal solutions that are replicated in
variations throughout other applications.

The Designer’s Dilemma

The designer of closed implementations must choose
functionality that is...

• general-purpose enough,

• clean enough,

• and efficient enough...

...to go into the system that all users must share .

Tutorial.book : Chap1.frm 17 Sun Sep 8 16:44:46 1996

Introduction 17

The answers often make sense from the designers’ and implementors’
points of view if their systems are monolithically constructed and are used
by a wide audience for many purposes.

The problem is that if the application programmer really needs a piece of
functionality, he will implement it somehow. The result are user programs
cluttered with partial, often sub-optimal solutions that are replicated in
variations throughout other applications.

The Implementors’ Dilemma

The implementors of closed implementations must choose
implementation strategies that are...

• general-purpose enough,

• clean enough,

• and efficient enough...

...to go into the system that all users must share .

Tutorial.book : Chap1.frm 18 Sun Sep 8 16:44:46 1996

18 Open Implementations and Metaobject Protocols

System tailorability fundamentally dissolves that tension. It allows sub-
strates to be lean, yet able to meet special needs of even small classes of
programs.

Restating the approach of this book in somewhat different terms: No per-
son using a substrate is a “general-purpose” programmer. Many times
application programmers have legitimate special needs.

A Long-Standing Tension...

General-purpose
enough for all

Special needs
of an individual

Designers and implementors of closed substrates
must choose:

Tutorial.book : Chap1.frm 19 Sun Sep 8 16:44:46 1996

Introduction 19

If the designer does a good job of making substrate system implementa-
tions open, the client programmer will often be able to solve his own prob-
lems by first adjusting the substrate to suit his needs. Then he can focus on
his application, constructing it on top of the modified substrate that is
exactly appropriate to him.1

This is the basic tenet of the material presented here. While this may sound
obvious to some, it has not been pervasive theory and practice in computer
science. This book must therefore show just what is meant by “principled”.

In particular, it needs to address concerns, such as these:

• Will tailorability result in a constantly changing interface?
• Can substrates still be safe?
• Can they be efficient, or will implementors be over-constrained?

A first step towards answering these questions will be to be more differen-
tiated about what it means to have an open implementation.

1. Open implementations should really be calledopen systems. But that term was taken.

Open Implementations
Dissolve the Tension...

...by giving the client programmer principled access to the
implementation. This enables him to inspect, extend and
modify the implementation to affect functionality or
performance.

Given such access, the programmer will be able to solve
many of his problems himself.

Tutorial.book : Chap1.frm 20 Sun Sep 8 16:44:46 1996

20 Open Implementations and Metaobject Protocols

Three kinds of implementation opening will be discussed, each serving a
different purpose. The first, introspection, enables the client programmer
to work with abstractions of selected implementation state in his pro-
grams. This helps answer questions such as the one about inheritance
structure on page 11. The challenge will be to do this without compromis-
ing the benefits of encapsulation.

The second kind of opening is the ability for client programmers to invoke
substrate functionality directly, without going through the official sub-
strate interface. This is often useful when the interface is ‘optimized’ for
cases other than what the client programmer needs.

The third kind of opening, finally, is to let programmers add or change sub-
strate behavior, or to adjust implementation strategies to improve perfor-
mance for particular applications. The missing copy functionality of
page 12, or the callback of page 13 are examples for this.

How will all this be accomplished? Fortunately, appropriate technologies
exist today.

Three Kinds of Opening

• Introspection—access to implementation state

• Invocation—access to internal functionality

• Intercession—changes to behavior or implementation
strategy to improve performance

Tutorial.book : Chap1.frm 21 Sun Sep 8 16:44:46 1996

Introduction 21

Metaobject protocols, the central tool used in this book, is a synthetic capa-
bility that draws from a variety of existing technologies. Each of these tech-
nologies is enriched by ongoing research. Except for the basics of object-
oriented programming, all necessary material around these technologies
will be introduced as it comes into play throughout the book.

Metaobject Protocols
A Synthetic Idea to Achieve Open Implementations

Reflection:
principled access to implementation

OOP:
modularizes

Partial evaluation,
late code generation:

recovers the overhead of flexibility

Metaobject protocols

Tutorial.book : Chap1.frm 22 Sun Sep 8 16:44:46 1996

22 Open Implementations and Metaobject Protocols

There is a long history that led up to the idea of open implementations and
metaobject protocols in particular. Important notions, such as run-time
code generation, partial evaluation, object-oriented programming, layers
of abstraction or implementation hiding spawned threads of development
in programming languages, as well as in the networking and operating
systems communities. This figure, together with the following one shows a
very rough layout of the notions and example systems inspired by these
early thoughts and associated prototypes. At the top, the language thread
shows how object-oriented programming was followed by Smalltalk-80
which already contained reflective elements in its metaclasses. In the oper-
ating systems area (lower part of the figure), Hydra’s policy/mechanism
separation was later followed by the Mach operating system with its
replaceable paging mechanism. Analogously for networking, ISO’s open
systems interconnection reference model (OSI) clearly followed an abstrac-
tion layering approach, and it has dominated thinking in the network com-
munity for a long time. But the network community has realized that
layering has limitations, and the concepts of application-layer framing (of
network data) and integrated layer processing (collapsing the layer imple-
mentation for specific purposes) are network equivalents of approaches
exemplified for the area of object models in this book.

Some Related Work (1/2)

Layers of
abstraction

Mach external
pager

Smalltalk80

Policy/mechanism
separation

Reflection

Implementation
 hiding Appl-level

framing
OSI

THE

HydraOS/360

Partial
Evaluation

Run-time code
generation

OOP

Simula

Tutorial.book : Chap1.frm 23 Sun Sep 8 16:44:46 1996

Introduction 23

Continuing with the development of languages, metaobject protocols
began to be used in CLOS to manage the complexities introduced by reflec-
tive architectures. The use of reflection, meanwhile, was broadened in
ABCL/R to cover problems of distribution.

Similarly to the networking community, it became clear that abstraction
brought inefficiencies which needed to be offset by advanced implementa-
tion techniques that reached back to the ideas of partial evaluation and
run-time code generation. The implementation of the Self language is nota-
ble in this context, as are the efforts around the Synthesis operating system.

With Open OODB, the database community entered the search for open
implementations as well. Open implementations, then, is the confluence of
several threads in a long history, fed by intellectual insights (abstraction,
implementation hiding, reflection), by technologies (partial evaluation,
run-time code generation, object-oriented programming) and by a series of
prototypes and products that attempted to bring all these together.

Please refer to the bibliography at the end of the book for relevant refer-
ences.

Some Related Work (2/2)

Metaobject
Protocols

Synthesis

Spring

ABCL/R

AL-1/D

Open OODB
Tal-OS

Spin
Omos

Apertos

SOM

Open
implementation

Self
implementation

CLOS MOPCommonLoops

Tutorial.book : Chap1.frm 24 Sun Sep 8 16:44:46 1996

24 Open Implementations and Metaobject Protocols

So much for history and the context of this book. It tells the story of open
implementations by using an object system as an example.

The following chapter presents the design of a traditional (black-box)
object system called TinyObjects. It will be the example used throughout
the book. Chapter 3 through Chapter 7 work through a series of program-
mer complaints, gradually opening the implementation to address them.

TinyObjects is a running system which will be introduced in Chapter 21. It
uses a C++-like syntax to make it easy to follow. But TinyObjects is not
C++. This is because C++—or any other full-fledged language—would be
more complex than desirable for teaching purposes. On the other hand,
TinyObjects is complex enough that the important issues of a real-life sys-
tem can be examined.

In most cases, real code will be used for the examples. The use of real code
can have the disadvantage of being somewhat more complex and less to
the point than pseudo code. The advantage, however, is that it can convey
a sense of the actual effort involved in the various examples.

1. An emulator for it is written in C++.

Roadmap

• Start with a simple object system: TinyObjects

• Making it visible

• Making it manipulable

• Making it modifiable

• Recovering performance

Iterative, Example-
driven Approach

Tutorial.book : Chap1.frm 25 Sun Sep 8 16:44:46 1996

Introduction 25

In order to successfully introduce the concepts, the reader is asked to sus-
pend questions of substrate performance until Chapter 7. That chapter is
exclusively dedicated to the problem of regaining performance lost by the
techniques introduced in earlier chapters.

Tutorial.book : Chap1.frm 26 Sun Sep 8 16:44:46 1996

26 Open Implementations and Metaobject Protocols

Tutorial.book : Chap2.frm 27 Sun Sep 8 16:44:46 1996

This chapter introduces a simple object system called TinyObjects. It is not
intended to be full-scale programming tool, but was instead designed to be
a simple “everyman” of object-oriented programming facilities, useful for
teaching purposes. There is nothing special about it, it is the common core
of C++, Smalltalk, CLOS and Objective-C, wrapped up in a C-like syntax.

The remainder of the chapter presents TinyObjects in three ways. First, the
next slide briefly summarizes the features of TinyObjects in the terminol-
ogy to be used throughout the book. Second, the following four slides
compare TinyObjects with other common object-oriented languages. Then,
the remainder of this chapter presents the syntax and behavior of specific
aspects of TinyObjects in more detail.

Chapter 2 TinyObjects:
A Simple
Object System

Tutorial.book : Chap2.frm 28 Sun Sep 8 16:44:46 1996

28 Open Implementations and Metaobject Protocols

As TinyObjects is being presented, be critical of it. Think about how useful
it would be to you. Is it missing features you think you might need? Do the
features it has work the way you would like? Make note of the problems
you discover. These will be useful later in designing, evaluating and
improving the open implementation of TinyObjects that subsequent chap-
ters will develop.

Tutorial.book : Chap2.frm 29 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 29

TinyObjects has a class/instance model, meaning that the programmer first
defines classes, and can then create objects that are instances of those
classes. The class specifies the slots it’s instances possess (instance vari-
ables in Smalltalk, data members in C++).

Generic functions are TinyObjects’ equivalent of “messages.” Methods pro-
vide the code that implements generic functions for specific classes. Meth-
ods specialized to subclasses override those for superclasses, but a method
can use callNextMethod to run the superclass method. TinyObjects sup-
ports multiple inheritance.

For simplicity, “everything is a pointer” in TinyObjects. This means there is
no need to deal with de-referencing pointers or finding object addresses.
All parameter passing is by reference and all return values are pointers.
TinyObjects also includes an automatic garbage collector, since that helps
simplify the code we show.

Finally, because TinyObjects is embedded in C it includes a number of
basic C features, such as variables, assignment, conditionals and the like.

TinyObjects
A Very Simple Object Model

• Class/instance model (not prototypes)

• Objects have slots

• Generic functions and methods

• CallNextMethod

• Multiple inheritance

• Dynamic type checking and no static typing

• Everything is a pointer

• Automatic Garbage Collection

Tutorial.book : Chap2.frm 30 Sun Sep 8 16:44:46 1996

30 Open Implementations and Metaobject Protocols

C+: comparison with TinyObjects:TinyObjects; C++, comparison

As is the case in languages like Lisp and Smalltalk, all values manipulated
by TinyObjects programs are dynamically typed objects. C++ programs, in
contrast, manipulate both object and non-object values, and rely primarily
on static typing.

While C++ distinguishes between virtual and non-virtual functions,
TinyObjects supports only what it calls generic functions, which have func-
tionality similar to virtual functions, but which are called using ordinary C
function call syntax.

The C++ facilities for enforced encapsulation are missing from
TinyObjects. Protection of data members (slots) is by convention only. Pro-
grammers are expected to read and write slots only through accessor
generic functions.

Another difference has to do with how TinyObjects resolves like-named
slots and like-named methods when classes inherit from each other.
Whereas C++ requires programmers to explicitly specify which class’s
data, or function member they wish to access, TinyObjects automatically
merges like-named slots (see page 40) and automatically orders like-
named methods (see page 50). (This aspect will be revisited in this book.)

Differences from C++

• Much simpler

• Dynamic type checking

• Everything is a pointer

• Dynamic dispatch only (virtuals)

• No public/private

• Automatic disambiguation of name conflicts

• Automatic garbage collection

Tutorial.book : Chap2.frm 31 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 31

Although TinyObjects is a compiled language with mostly C-like syntax
and control structures, in many respects it is similar to Smalltalk. One big
difference is support for multiple inheritance, with conflicts resolved by a
CLOS-like class precedence mechanism.

In addition, TinyObjects has a general scheme for automatically initializing
objects as they are created.

Another big difference is that whereas Smalltalk includes some meta-object
protocol functionality, TinyObjects, as introduced in this chapter, includes
no metaobject protocol. (That will be added in later chapters.)

TinyObjects:Smalltalk, comparison;Smalltalk:comparison with TinyObjects

Differences from Smalltalk

• Multiple inheritance

• Object initialization mechanism is different

• No meta-classes (to begin with)

• Function syntax instead of messages

Tutorial.book : Chap2.frm 32 Sun Sep 8 16:44:46 1996

32 Open Implementations and Metaobject Protocols

Those who know CLOS will recognize that TinyObjects is much simpler,
and missing many useful CLOS features.

TinyObjects supports only classical method dispatch, so it does not sup-
port multi-methods or eql specializers. It also has no declarative method
combination. It does, however, have callNextMethod .

TinyObjects has only instance slots and no class slots. It does not have slot
initializers, slot initargs, or automatically generated slot accessors.

Also, at least initially, TinyObjects is more C-like than CLOS-like, in that
classes, generic functions and methods are not first class. Also, as men-
tioned in the comparison with Smalltalk, TinyObjects differs from CLOS in
that it starts with no meta-object protocol.

CLOS:comparison with TinyObjects;TinyObjects:CLOS, comparison

Differences from CLOS

• Much simpler

• Class specializers only

• No multimethods

• Object initialization

• No method combination

• No slot options

• Classes, methods and GFs are not first-class

• No redefinition (classes or methods)

Tutorial.book : Chap2.frm 33 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 33

Like Objective-C, TinyObjects is a compiled language based on C, with a
dynamically-typed object system. Unlike Objective-C, where objects are an
addition to C's statically-typed values, TinyObjects’ object system is a
replacement for C’s type system. All values are objects, and even built-in
classes like integers and strings can have new methods defined on them.

TinyObjects uses ordinary function call syntax to invoke methods on an
object, rather than Objective-C’s special message send syntax. TinyObjects
also supports multiple inheritance.

In addition, TinyObjects has a general scheme for automatically initializing
objects as they are created.

TinyObjects:Objective-C, comparison;Objective-C:comparison with TinyObjects

Differences from Objective-C

• Multiple inheritance

• Everything is an object

• Object initialization mechanism

• Function syntax, instead of messages

Tutorial.book : Chap2.frm 34 Sun Sep 8 16:44:46 1996

34 Open Implementations and Metaobject Protocols

The remainder of the chapter presents the syntax and behavior of
TinyObjects in more detail.

This slide shows how a new class is defined. The definition consists of four
parts: The keyword class , the name of the new class, a list of superclasses
and a list of slot names. Note the plural, superclasses—TinyObjects sup-
ports multiple inheritance. (Examples of defining a class with multiple
superclasses will come up shortly.)

Throughout this book we will use a naming convention in which class
names begin with an uppercase letter, and each subsequent word in the
name is also capitalized. Function, variable and slot names will begin with
a lowercase letter, and each subsequent word in the name will be capital-
ized.

Class:definition;Class:TinyObjects in; Multiple inheritance:specification; Slot:definition;Super-
class:definition; TinyObjects:Class definition; Multiple inheritance:TinyObjects in; Subclass:defini-
tion

Defining Classes

 class Politician (Object)
 (concerns);

Name

Slots Superclasses

Tutorial.book : Chap2.frm 35 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 35

Objects are created using the new primitive. The syntax is the new keyword
followed by the class name and a (possibly empty) list of initialization
arguments. The new primitive returns (a pointer to) an initialized object. In
this example, that new object is then bound to the variable mayor .

The syntax and processing of the initialization arguments—which will sub-
sequently be abbreviated to initargs—is class-specific. More detail on this
will be provided shortly.

TinyObjects:Object creation

Making Objects

 mayor = new Politician(...)

Class Initargs

Tutorial.book : Chap2.frm 36 Sun Sep 8 16:44:46 1996

36 Open Implementations and Metaobject Protocols

TinyObjects provides generic functions, which have functionality similar
to that of C++ virtual functions or Smalltalk messages.

The figure shows the definition of a generic function that takes two argu-
ments. The names of the arguments are in no way significant to
TinyObjects, although good programming style dictates using meaningful
names. Once methods are added, the class of the first argument (person)
will determine the method that is run.

Generic function:definition;Generic function:TinyObjects in

TinyObjects:Generic function definition

Defining Generic Functions

generic vote (person, issue);

name
arguments

Tutorial.book : Chap2.frm 37 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 37

Methods provide the behavior of generic functions. A generic function can
have multiple methods, specialized to specific classes. When a generic
function is called, it checks the class of its first argument, and selects from
among its methods the one that most specifically matches that class. (This
will be covered in more detail in the remainder of the chapter.)

A method definition contains four components: the keyword method , the
name of the generic function to which the method belongs, an argument
list, and a body of code. The argument list must contain as many argu-
ments as are specified in the generic function definition. The first argument
is special in that the name of its class must also be specified. (This is the
class to which the new method is specialized.)

The vote method above is said to be “specialized to the Politician

class.” Note that in TinyObjects the object to which the method is applied
appears as an explicit parameter (the first), rather than being an implicit
(“self”) parameter as it is in some languages.

Method:definition;Method:TinyObjects in;TinyObjects:Method definition

Defining Methods

method vote (Politician pol, issue){
make the popular choice }

GF name
“Self”

Method
code

Other
arguments

Class of
first argument

Tutorial.book : Chap2.frm 38 Sun Sep 8 16:44:46 1996

38 Open Implementations and Metaobject Protocols

Generic functions are called using normal C function call syntax. Method
dispatch is driven by the first argument only (in this case mayor).

Assuming only the method and class definitions shown so far, this call to
vote will run the method on the previous page. If on the other hand, vote

were called on an object of the class Object , the only superclass of Poli-

tician , no method would be applicable and an error would be signalled.

Generic function:invocation;Method:invocation

Calling a Generic Function

 vote(mayor, “new holiday”)

Other
arguments

Object

GF Name

Tutorial.book : Chap2.frm 39 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 39

This is an example where more than one method is defined on a single
generic function. First, a new class of person, Manager , is defined. A
method on vote , specialized to Manager is defined as well. The two calls
to vote show the effect of having the two different methods—politicians
seek to be popular with the workers, and managers seek to be popular
with the stockholders.

At the bottom of the slide, as a convention in this book, an arrow “-->”
indicates the return value of a procedure, function, or language primitive.

Method:invocation

Polymorphism

class Manager (Object) ();
method vote (Manager who, issue) {

make cost-effective choice}

ceo = new Manager()

vote(mayor, “new holiday”) --> “YES”
vote(ceo, “new holiday”) --> “NO”

Tutorial.book : Chap2.frm 40 Sun Sep 8 16:44:46 1996

40 Open Implementations and Metaobject Protocols

In TinyObjects, each object stores values for a set of slots specified by its
class. For example, the class Politician defines one slot—concerns . (It
inherits no slots from its superclass Object.) So, Politician objects
each end up with a single slot, concerns .

At the lowest level, slots can be read and written using the dot notation
shown on the slide.

Note that on this slide we are making a simple use of a list data structure
similar to that found in many data structure libraries. (For more about this
data structure see page 73 and page 74).

Question: You’ve said that TinyObjects has a multiple inheritance model. What happens if
two different superclasses define a slot with the same name?

Answer: In this situation, TinyObjects works like CLOS and Smalltalk, not like C++. That
is, the resulting objects end up with only a single slot with that name. While this simple
solution is often satisfactory, there are cases where it is inappropriate (e.g., the diamond
example mentioned on page 75 and page 77). This may be something to add to your list of
behaviors that an open implementation of TinyObjects should allow programmers to
adjust for themselves.

TinyObjects:Slot access;Slot:accessing

Accessing Slots

 mayor.concerns = list(“IRS”)

 mayor.concerns --> (“IRS”)

object slot name new value

Tutorial.book : Chap2.frm 41 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 41

Object initialization is accomplished through a built-in mechanism that
allows each class to have its own initializer. These are special pieces of code
that are called automatically as part of object creation.

In the example above, the initializer accepts two arguments. The first is the
actual new object, the second is the first of the initargs supplied to new.

Like many initializers, this one simply runs the superclass initializer and
then stores the value of the concerns initarg in a slot. It is important to
note though that the body of an initializer can include any arbitrary code.
(Examples of more elaborate initializers will come up shortly.)

Initializers define the initargs that a class accepts, so from the perspective
of instantiators of the Politician class, the effect of this initializer is to
say that when creating politicians, the first and only initarg should be the
concerns. Similarly, note that the class Object is not expecting any ini-
targs. Only the object itself is passed in the call to the initializer for
Object .

TinyObjects:Object initialization;Object:initialization

Initialization of Objects

initializer Politician (pol, concerns) {
initialize Object (pol);
pol.concerns = concerns;}

aPol = new Politician(list(“hi tech”))

aPol.concerns --> (“hi tech”)

Tutorial.book : Chap2.frm 42 Sun Sep 8 16:44:46 1996

42 Open Implementations and Metaobject Protocols

When programming in TinyObjects, a stylistic convention is used which
discourages clients from accessing the slots of an object directly. Instead,
generic functions and appropriate methods for accessing the state of an
object are defined, even when the state being accessed is stored directly as
the value of a slot. This encapsulation convention provides better modular-
ity, and allows the programmer to change the internal representation of
objects without changing their interface.

Note that to save space, in later examples the explicit definition of such
state accessing generic functions and methods, which we refer to as readers
and writers, will often be omitted and simply assumed to exist.

Exercise: Some languages, including C++, provide an explicit mechanism to enforce this
slot access discipline. For reasons of simplicity, we have chosen to leave this out of
TinyObjects. Was this the right choice? How can you be sure? Or is this an example of a
design decision that is impossible to get just right for all prospective programmers?

TinyObjects:Encapsulation

Encapsulation
Reader and Writer Generic Functions and Methods

generic concerns (pol);
generic setConcerns (pol, concerns);

method concerns (Politician pol) {
return pol.concerns;}

method setConcerns (Politician pol, concerns) {
pol.concerns = concerns;}

Tutorial.book : Chap2.frm 43 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 43

Reader and writer generic functions are called just like any other generic
functions.

Using Readers and Writers

concerns(mayor) --> (“IRS”)

setConcerns(mayor, list(“ethics committee”))

concerns(mayor) --> (“ethics committee”)

Tutorial.book : Chap2.frm 44 Sun Sep 8 16:44:46 1996

44 Open Implementations and Metaobject Protocols

The next five pages present all the code for the voting program, including
some new code not shown before. Along the way, several important points
about polymorphic programs in TinyObjects are emphasized. Once all the
code has been presented the chapter concludes with several pages that dis-
cuss the full behavior of method dispatch in the presence of multiple inher-
itance.

This slide shows all the class definitions, including two new classes,
Elected and Senator . The class Elected is a mixin-class, not designed
to be instantiated on its own.1 The class Senator is an instantiable class
and, as shown, Senator s are elected Politicians.

Class:definitio;TinyObjects:Class definition; <$startrange>Examples:TinyObjects basics; Polymor-
phism<start>; Multiple inheritance:TinyObjects in

1. The use of mixin-classes is a stylistic convention popular in some OO communities. As
used in this book, the mixin-classes are not in any way syntactically distinguished,
although adding such a feature is a good thing to consider when you read Chapter 5.

The Complete Program (1/5)

Classes

class Politician (Object) (concerns);

class Manager (Object) ();

class Elected (Object) (margin);

class Senator (Elected, Politician) (state);

Tutorial.book : Chap2.frm 45 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 45

At the bottom of the figure are three readers and one writer. The concerns
of a politician can be read and written, but the margin of an elected politi-
cian and the state of a senator are fixed at the time those objects are created.
They can only be read, and may not be modified or written afterwards.

The Complete Program (2/5)

Readers and Writers

generic concerns (pol);

method concerns(Polictician.pol) {
 return pol.concerns;}

•

•

•

Similar definitions for margin,
state and set concerns

Tutorial.book : Chap2.frm 46 Sun Sep 8 16:44:46 1996

46 Open Implementations and Metaobject Protocols

This slide shows the initializers for all the classes that have one. Note that a
class is not required to have an initializer. Again, from a programmer‘s per-
spective, these initializers mandate the format of the initargs list when
instances of each class are created. So, for example, creating a senator
requires three initargs: the concerns, the margin of victory, and the state.

It is the responsibility of the initializer of a subclass to make sure that the
superclass initializer(s) are called. As shown, the usual convention for
doing this is that the superclass initializers are called first, and then the
class-specific initialization is performed.1

Object:initialization

1. Note also that the initializer for the classobject will end up being run twice. This is
true of the initializer for any class inherited along multiple paths.This means that the
code for any initializer must be idempotent.(See page 75 for more about such “dia-
mond” cases.)

The Complete Program (3/5)

 Initialization

initializer Politician (pol, concerns){
initialize Object (pol);
pol.concerns = concerns;}

initializer Elected (pol, margin){
initialize Object (pol);
pol.margin = margin;}

initializer Senator (pol, concerns,
 margin, state){

initialize Elected (pol, margin);
initialize Politician (pol, concerns);

Tutorial.book : Chap2.frm 47 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 47

Here is the definition of the generic function vote and the two methods on
it that we’ve already seen.

Generic function:applicability

The Complete Program (4/5)

Generic Function and Methods

generic vote(person, issue);

method vote (Politician pol, issue) {
make the popular choice }

method vote (Manager who, issue) {

method vote ((who Manager) issue) {
make cost-effective choice }

Tutorial.book : Chap2.frm 48 Sun Sep 8 16:44:46 1996

48 Open Implementations and Metaobject Protocols

Here are two more methods on the generic function vote , that define spe-
cial behavior for the classes Elected and Senator .

The effect of the first method is to make the politician cave in to the appro-
priate lobby if their margin of victory was narrow (the first branch of the
if). If their margin was 10 or more, they just defer to the next most specific
method by invoking callNextMethod .

Senators also defer to the next most specific method, unless the issue is one
of their special concerns; in that case they filibuster (enter the infinitely
recursive call to vote).

 <$endrange>Examples:TinyObjects basics;Polymorphism<end>

The Complete Program (5/5)

More Methods

method vote (Elected pol, issue) {
if (margin(pol) < 10)

return agreeWith(findLobby(issue));
else

return callNextMethod();}

method vote (Senator pol, issue) {
if (isIn(issue, concerns(pol))) {

expound(randomCitation());
return vote(pol, issue);}

else
return callNextMethod();}

Tutorial.book : Chap2.frm 49 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 49

This code creates two senators from California, each with their particular
margin of victory and list of concerns. Again, the number and meaning of
the initargs supplied to new is defined on a class-specific basis by the rele-
vant initializer, in this case by the initializer for the class Senator .

Using this complete example, the next several pages conclude the chapter
by presenting the full functionality of method lookup and overriding in the
presence of multiple inheritance.

Making Senators

senCa1 = new Senator(“California”,
 10,
 list(“ hot tub quot a”))

senCa2 = new Senator(“California”,
 3,
 list(“ ozone hole ”,
 “ prop wash shortage ”))

Tutorial.book : Chap2.frm 50 Sun Sep 8 16:44:46 1996

50 Open Implementations and Metaobject Protocols

This figure introduces the concept of class precedence list which plays a cen-
tral role in method dispatch. The class precedence list (CPL) of a class is a
linearization of its superclasses. The details of the linearization are not cru-
cial for our purposes. The essential points of the linearization are that: (i)
subclasses always precede their superclasses, and, (ii) the order that classes
appear in the superclasses field of class is preserved.

Method dispatch and callNextMethod rely on the CPL. When a generic
function is called, it first obtains the CPL of the class of the first argument,
and then selects from among the generic function’s methods the one spe-
cialized to the class that appears earliest in the CPL. If callNextMethod is
invoked in the body of that method, the method specialized to the class
that appears next in the CPL is run, and so on.

To understand this better, consider the detailed examples on the next
pages.

Class precedence list

Method Dispatch (1/4)

 (Senator Elected Politician Object)

Object

Elected

Senator

Politician

class graph is linearized to
form class precedence list

Tutorial.book : Chap2.frm 51 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 51

When the generic function call shown above is executed, the first method
that runs is the one specialized to Senator (bottom of page 47). Since sun-
tan lotion is not one of the senator’s special concerns, that method invokes
callNextMethod , which then runs the method specialized to Elected

(top of page 46). When that method invokes callNextMethod, it runs
the method specialized to Politician (page 46) which makes the popu-
lar choice and returns “no.”

Notice the importance of having callNextMethod follow the class prece-
dence list of the first argument to the generic function. The second invoca-
tion of callNextMethod ends up running the method specialized to
Politician , even though Politician is not a superclass of Elected .
This behavior is what makes multiple inheritance and mixin-classes practi-
cal to use in TinyObjects.

Method:invocation

Method Dispatch (2/4)

vote(senCa1, “ suntan lotion requirement ”)

(Senator Elected Politician Object)

callNextMethod callNextMethod

Object

Elected

Senator

Politician
Initial Dispatch

Tutorial.book : Chap2.frm 52 Sun Sep 8 16:44:46 1996

52 Open Implementations and Metaobject Protocols

As a second example, consider the case where senCa1 votes on a hot tub
quota which is one of their concerns. In this case, the bottom method on
page 47 just calls vote recursively, causing a filibuster.

It is important to stress that not every class must have a method for every
generic function. For example, if there was no method on vote specialized
to Senator , method dispatch would jump to the next class in the CPL
(e.g., Elected). If on the other hand there was no method specialized to
Elected (but there was for Senator and Politician , then callNext-

Method from the method specialized to Senator would go to the method
specialized to Politician , skipping Elected .

Method Dispatch (3/4)

vote(senCa1, “ hot tub quota ”)

 vote(pol, issue)

 (Senator Elected Politician Object)

Object

Elected

Senator

Politician
Initial Dispatch

Tutorial.book : Chap2.frm 53 Sun Sep 8 16:44:46 1996

TinyObjects: A Simple Object System 53

Finally, when someone like senCa2 , with the low margin of victory, votes
on an issue that is not one of their concerns, the method specialized to
Elected decides to agree with an appropriate lobby.

This concludes the introduction to TinyObjects. This is all the preparation
needed to start showing how a meta-object protocol can be used to open
the implementation of a substrate like this, thereby making it more flexible
and useful for the programmer.

Method Dispatch (4/4)

vote(senCa2, “ high-rise
 restrictions ”)

 (Senator Elected Politician Object)

Initial Dispatch

Object

Elected

Senator

Politician

callNextMethod

Tutorial.book : Chap2.frm 54 Sun Sep 8 16:44:46 1996

54 Open Implementations and Metaobject Protocols

Tutorial.book : Chap3.frm 55 Sun Sep 8 16:44:46 1996

In this chapter we will observe the first of several design cycle iterations
that open the implementation of Tiny CLOS. This first iteration will result
in an implementation with introspective capabilities, which allow pro-
grammers to examine the state of the system, but do not allow any modifi-
cations. Subsequent iterations will...

This book uses an iterative and example-driven style throughout. In fact,
this approach is important to the design of any real open implementation.

If done right, at the end of this cycle, a whole class of shortcomings requir-
ing the newly accessible functionality can be addressed by the program-
mer, without further involvement of the substrate designer or
implementors.

Chapter 3 But I Wish I
Knew…

Tutorial.book : Chap3.frm 56 Sun Sep 8 16:44:46 1996

56 Open Implementations and Metaobject Protocols

TinyObjects is, like most of its cousins, a “black-box” design. It presents the
programmer with a simple narrow interface through which instructions,
such as class and method definitions are passed. No aspect of the object
system’s implementation is visible outside of the black box. Programmers
write code on top of this interface, with no knowledge of the implementa-
tion below them.

This chapter will show that the totality of information hiding traditionally
associated with black-box abstractions is not always an advantage. It will
also show that the notion of black-box abstraction can be expanded to allo
w some useful “looking inside the box” and how this can be done without
compromising the important maintainability, robustness and portability
goals of the approach.

Black-box:abstraction

The Current Situation
Black-Box Abstraction

TinyObjects
interface

closed
TinyObjects
implementation

simple,
elegant
program

Tutorial.book : Chap3.frm 57 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 57

The material from here to page 78 shows the first complete iteration
through an open implementation design cycle:

• Programmer complaints prompt the designer to consider changing
the substrate design (page 58).

• The designer analyzes the complaints to get a more general sense of
what programmers really need (page 59).

• The designer XXX. (page 62 to page 66).
• The designer develops a clean abstraction to such information and

mechanisms, thereby opening the implementation as needed—in a
disciplined fashion (page 67).

• The designer tests the abstraction (page 69 to page 77).
• The designer revisits the programmer complaints to ensure they have

been adequately dealt with, thereby repeating the previous five steps
(page 79 to page 77).

• The designer ensures coherence of the resulting extended system and
the existence of efficient implementation algorithms (page 89 and
page 84). Design cycle

Flow of the Following Material

Successive examples of programmers problems working
with TinyObjects elicit responses from the designer that
progressively open the implementation.

The actual messages from programmers are made up, but
they are representative of real problems seen with real
object-oriented systems.

Tutorial.book : Chap3.frm 58 Sun Sep 8 16:44:46 1996

58 Open Implementations and Metaobject Protocols

This slide shows a message from a programmer asking for functionality
that the basic TinyObjects doesn’t support.

The slide shows just one message, but since the designer remembers many
similar messages, she decides to see if there is some way she could
improve TinyObjects to help solve these kinds of problems.

In working with these (or any other) programmer requests, the substrate
designer faces a dual challenge. One the one hand, she wants to respect the
particulars of each request. On the other hand, she wants to back away a
bit from those particulars so that she can develop a more general under-
standing of the need and so design more generally useful functionality,
that can satisfy all the requests.

<$startrange>Examples:browsers; <$startrange>Slot:reification; <$startrange>Subclass:reification;
Reification:class

I Wish...

A TinyObjects programmer writes:

For my new quality assurance program I need to
write programs that have access to information
about what subclasses a class has, which slots are
inherited from where, which methods are
specialized on which class, and so on.

How can I get this information?

Tutorial.book : Chap3.frm 59 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 59

In this case, that stepping back and getting a more general sense is rela-
tively straightforward. In essence, the programmer is asking for access to a
representation of the basic inheritance structure of his programs.

But note that requests from the programmer will not always be this clear.
Because the programmer is trained to respect abstraction and not to ask for
what is under the covers, and because the system designer is trained to
hide information, communication surrounding this kind of request can be
murky. It can take quite some time to get to a clear understanding of what
a programmer needs.

<$startrange>Class:reification; Class:linkage with methods, generic functions and subclasses;
Generic function: linkage with classes and methods; Method:linkage with classes and generic func-
tions; Subclass:linkage with superclasses

What Is This Programmer Asking For?

• Superclass/subclass information

• Slots defined on each class

• Methods specialized to each class

A representation of the inheritance
structure of their program.

Tutorial.book : Chap3.frm 60 Sun Sep 8 16:44:46 1996

60 Open Implementations and Metaobject Protocols

At this point the designer’s job is to understand whether this is a reason-
able request and what it might mean for TinyObjects to provide such func-
tionality. To do this, the designer now shifts gears a bit and starts thinking
about what it would mean, from the TinyObjects implementor’s perspec-
tive, to provide such functionality. The question is, would it be reasonable
for implementations to maintain and export, in some form, a representa-
tion of the program?

In thinking about this, the designer is going to rely on her sense of the
inherent structure of Tiny Objects implementations --- exposing that to the
programmer in a principled way is what it means to design an Open
Implementation of Tiny Objects. She will however be careful not to allow
the details of particular implementations to end up being visible to the pro-
grammer.

The notion of a system’s inherent implementation structure is a subtle one,
and it requires some time to become comfortable with. As with most other
design guidelines, the best way to learn it is from a series of examples,
rather than an abstract definition. This kind of example, together with dis
cussion is what this book presents.

Inherent Program Representation

Looking for a representation of the inheritance structure of
the program.

Tutorial.book : Chap3.frm 61 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 61

Note the cloud icon at the top right of the slide. We will use this icon
throughout the book to mark slides that show the designer’s thoughts
about the inherent structure of the implementation.
Black-box:partial opening;Cloud icon; Icons:cloud

Tutorial.book : Chap3.frm 62 Sun Sep 8 16:44:46 1996

62 Open Implementations and Metaobject Protocols

This figure goes into more detail inside the cloud. The designer is now
thinking about what such a program representation might be like. Check-
ing her speculation to be sure it fits within the inherent structure of Tiny
Objects implementations, the designer is satisfied she is within reason
since any TinyObjects complier inherently has to have a representation of
the program in order to compile it. This check is important for two reasons:
First it suggests that such functionality could be easy to implement. Sec-
ond, it reinforces her sense that this is a reasonable thing for programmers
to want access to.

For people who are not object system designers or implementors, the last
paragraph may be a bit surprising. But object systems are not magic. In the
same way that a window system has representations of windows, or an
accounting system has representations of accounts, a TinyObjects imple-
mentation will have representations of classes, methods and generic func-
tions.

Inherent Program Representation

Classes
Generic functions

Methods

 Object

 Elected Politician

 Senator

 vote

M1 M2 M3

Tutorial.book : Chap3.frm 63 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 63

The designer now goes on to consider in more detail the desired program
representation should look likeThe box with the rounded corners shows an
elaboration of one of the boxes on page 62. The notation “#xxx” (sharp fol-
lowed by anything) is a compact visual way of indicating a structure
passed around by an implementation.)

As she is drawing these pictures, the designer is aware that not all imple-
mentations will use record-like structures such as these to maintain this
information. But she is confident that, whatever form it takes, a representa-
tion of each class, including this information taken from the class defini-
tion, is an inherent aspect of implemeting Tiny Objects.

Sign convention

Representation of a Class (1/3)

class Senator (Elected, Politician)
 (state);

name: Senator
direct-supers: (#Elected #Politician)
direct-slots: (state)

 Class Senator

Tutorial.book : Chap3.frm 64 Sun Sep 8 16:44:46 1996

64 Open Implementations and Metaobject Protocols

The designer now reasons that such class descriptions should also contain
various kinds of derived information, such as:

• The class precedence list (CPL), which is a collection of all the super-
classes, direct and indirect, ordered to reflect the relative specificity of
methods. (See page 51, if you wish to review CPLs

• A complete list of all the class‘s slots, those defined directly in the
class as well as those inherited from superclasses.

Representation of a Class (2/3)

The class precedence list (CPL) and complete set of
slots are computed and stored

name: Senator
direct-supers: (#Elected #Politician)
direct-slots: (state)
CPL: (#Senator #Elected)

 #Politician #Object)
slots: (state margin concerns)

 Class Senator

Object

Elected Politician

Senator

Tutorial.book : Chap3.frm 65 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 65

The designer also believes that the representation of a class should point to
its subclasses as well as its superclasses.

Question: It isn’t clear to me that all TinyObjects implementations would actually main-
tain pointers from superclasses to subclasses. Is this really a valid assumption?

Answer: While it is true that some implementations might not maintain such pointers,
many implementations do, if only for the purpose of supporting debugging

This question brings up an important point about what ‘‘the inherent struc-
ture of the implementation’’ means. Specifically, is is a broader concept
than what existing implementations necessarily do. It is more like what it
is reasonable to think of them as doing, and reasonable to require them to
do. Keeping pointers from a class to its subclasses may not be something-
closed Tiny Objects implementations do, but it is within the inherent struc-
ture of Tiny Objects implementations. If this concerns you, be sure to
consider it when you do the exercise on page 94.

Representation of a Class (3/3)

class Freshman (Senator) ();

name: Senator
direct-supers: (#Elected #Politician)
direct-slots: (state)
CPL: (#Senator #Elected)

 #Politician #Object)
slots: (state margin concerns)
direct-subs (#Freshman)

 Class Senator

Tutorial.book : Chap3.frm 66 Sun Sep 8 16:44:46 1996

66 Open Implementations and Metaobject Protocols

So far, two steps of the design cycle have been completed: (i) the object sys-
tem designer has gotten a good sense of what additional functionality the
programmer needs to address his problems, and (ii) with an eye towards
providing this functionality, the designer has thought carefully about the
inherent structure of TinyObjects and what would make sense to provide.

In this case, she can conclude relatively easily that providing such func-
tionality appears to be useful, coherent and implementable. Her conclu-
sion comes easily in this case because both the programmer complaints
were so clear, and the degree to which this functionality is an inherent part
of Tiny Objects implementation is so clear.

Strategy

Programmers want representation of programs.

Such information is an inherent property of TinyObjects

a clean interface to program representation could be:
useful,
coherent,
and reasonably easy to implement

Tutorial.book : Chap3.frm 67 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 67

<IndexCode>@ <Default Para Font>Sign convention;Scroll icon; Icons:scroll; Metaob-
ject;Class:metaobjects;Class:accessor functions

At this point she needs to design an interface that is clean and elegant, and
that provides appropriate insulation between the programmer and the
implementation.

What is needed is a simple data abstraction, so the designer decides to
present that in the form of objects, using the encapsulation properties of
Object-Orientation to help get a clean abstraction. Her decision to use
objects is for two reasons: it is natural, the programmers by definition are
already comfortable with objects.

This slide summarizes the data abstraction developed by the designer. It
works by making available, on a per-class basis, an object that provides
access to important information about that class.

All the accessors begin with an “@.” This is simply a naming convention
about which more will be said soon. To save space, the return values of
these accessors are not specified in detail here, but they return the “natu-
ral” values. That is, @classDirectSupers returns a list of class description
objects. Similarly, @classDirectSlots returns a list of slot names as strings.
The issues that arise when writing a more detailed specification of these
accessors will be addressed later.

Access to Data about Classes

Implementations will provide objects to describe each class
in a program. These objects support a small set of readers.

Readers:
@className@classCPL
@classDirectSupers @classSlots
@classDirectSlots
@classDirectSubs

Get class objects:
from class name:@findClass (“Senator”)
from object: @classOf (senCa1)

Tutorial.book : Chap3.frm 68 Sun Sep 8 16:44:46 1996

68 Open Implementations and Metaobject Protocols

It is important to note that the material on this slide represents a proposed
extension to the Tiny Objects specification. This fact is marked by the small
scroll icon in the corner. If the designer decides to go ahead and publish
this, all Tiny Objects implementations will then be required to support this
new functionality. Before publishing it then, the designer will be careful to
test it, and assure herself that it is indeed useful and implementable.

A NEW SLIDE GOES HERE COMPARING THE AMORPHOUS CLOUD
ICON TO THE SCROLL ICON IN MEANING

It is crucial to distinguish between the meanings of slides with a cloud and
slides with a scroll. Slides with a cloud reflect the designer’s initial think-
ing about the inherent structure of Tiny Objects implementations and how
her design might work. Slides with a scroll reflect a real proposed design.
Do not, for example, let a slide with a cloud, such as the one on page 64,
lead to an assumption that a “documented1 class description object will
have a slot named directSlots .” Slides with a scroll are all that will
documented—they are all the programmer will be able to count on. The
one on page 67, for instance, says that the only way to get the direct slots of
a class is to call @classDirectSlots .

At this point the designer is making good progress towards addressing this
first set of programmer requests. But, she still has to ensure that her pro-
posed design is both truly implementable and truly useful. She decides to
assess its usefulness first, by trying to code up solutions to the programmer
problems that have been posed.

1. The termsdocumented andspecified will be used interchangeably.

Tutorial.book : Chap3.frm 69 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 69

The first programmer problem she turns to concerns finding the subclasses
and superclasses of a class. For example, the programmer might want to
find out the transitive closure of a class’s subclasses. This figure shows the
available interface and functionality from the programmer’s perspective.
Again, it is crucial to understand that the designer is now working from
the programmer’s perspective. She has to understand whether the func-
tionality she has designed will solve the programmer’s problems. The fact
that this slide is using the new functionality is reflected by the small mop
icon in the upper right. (The mop is because we’ll shortly be saying that
this new functionality is a metaobject protocol (MOP).)

Using the new functionality, it is straightforward to obtain the complete list
of subclasses of Object by walking down the tree, calling @classDi-

rectSubs for each node to get to the next level down.

Subclass:finding; Mop icon; Icons:mop

Finding All Subclasses (1/3)

Testing the new facilities

@classDirectSubs
returns down links

@classDirectSupers
 returns up links

Object

 Elected

Senator

Politician

Tutorial.book : Chap3.frm 70 Sun Sep 8 16:44:46 1996

70 Open Implementations and Metaobject Protocols

This slide shows the actual code the designer believes the programmer
should write to implement the tree walk.1 Mostly, it looks like any other
tree walking program. It recursively walks down the class graph, collecting
each class as it goes. In the interest of brevity, code that removes duplicates
from the returned list of classes has been left out. Senator will therefore
appear twice in the result of calling @allSubs with the class Object.

This slide makes use of several more of the built-in list operators men-
tioned in Chapter 2. The statement extend(result,c) adds the class
description object c to the end of the list result . The foreach assigns
successive elements of the list returned by @classDirectSubs to the
variable sub and executes its body. When the list is exhausted, the loop ter-
minates. For mor information on these see page 72.

TinyObjects:<IndexCode>extend<Default Para Font> operator; Class:visual representation conven-
tions

1. We assume that the designer has mocked up an implementation of the new functional-
ity so that she can actually run her test programs, as opposed to just write and think
about them.

Finding All Subclasses (2/3)

A First Use of Class Readers

function @allSubs (c) {
var result = list();
@walkSubs(c, result);
return result;}

function @walkSubs (c, result) {
extend(result, c);
foreach(sub, @classDirectSubs(c))

@walkSubs(sub, result);}

Note:
This accepts and returns
class description objects.

Tutorial.book : Chap3.frm 71 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 71

A simple test of the @allSubs function shows that it works as desired.

By taking advantage of the fact that the class Object is at the top of the
class hierarchy in every TinyObjects program, the programmer could build
another useful function, @allClasses , which returns every class cur-
rently loaded, simply by calling @allSubs .

Exercise: As written above, the function @allSubs accepts and returns class description
objects. But this can be inconvenient in some cases. Write a similar function that accepts
and returns class names.

Finding All Subclasses (3/3)

@allSubs(@findClass(“Politician”))
--> (#Politician #Senator)

function @allClasses () {
return @allSubs (@findClass(“Object”));}

@allClasses() --> (#Object #Politician

 #Elected #Senator …)

Tutorial.book : Chap3.frm 72 Sun Sep 8 16:44:46 1996

72 Open Implementations and Metaobject Protocols

This slide and the next provide a concise summary of the list data structure
being used throughout the book. The behavior of each of the operations
should be clear from the examples.‘The fact that TinyObjects includes and
automatic garbage collector is most evident in code that manipulates lists.
There are no calls to free before list a becomes unused.

TinyObjects:<IndexCode>first<Default Para Font> operator; TinyObjects:<IndexCode>isIn<Default
Para Font> operator; TinyObjects:<IndexCode>list<Default Para Font> operator;
TinyObjects:<IndexCode>lookup<Default Para Font> operator;

<IndexCode>first<Default Para Font> operator; <IndexCode>isIn<Default Para Font> operator;
<IndexCode>list<Default Para Font> operator; <IndexCode>lookup<Default Para Font> operator

Summary of List Operations (1/2)

letters = list(“A”, “B”, “C”)--> (“A” “B” “C”)

first(letters) --> “A”

 isIn(“B”, letters) --> true

 var labelValuePairs = list(list(“A”, 1),
 list(“B”, 2),
 list(“C”, “Blue”))

 lookup(“A”, labelValuePairs) --> 1

Tutorial.book : Chap3.frm 73 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 73

Assume in the code above, that direction(river) returns a list of
directions, such as (“N” “S”) . Since extend(list,element) appends
element onto the end of list, the result of the first loop is a list of lists.
On the other hand, since. Union(list,sublist) , merges the new sub-

list onto the end of list .The result of the second loop is a list of direc-
tions.

<IndexCode>Union<Default Para Font> operator;TinyObjects:<IndexCode>Union<Default Para
Font> operator; <$endrange>Subclass:finding; <IndexCode>extend<Default Para Font> operator

Summary of List Operations (2/2)

extend appends an item to the end of a list.
union merges a list onto the end of a list.

 var result = list();
foreach(river, (list(“Nile”, “Amazon”)))

 extend(result, direction(river));
return result; --> ((“N” “S”) (“E” “W”))

var result = list();
foreach(river, (list(“Nile”, “Amazon”)))

 union(result, direction(river));
return result; --> (“N” “S” “E” “W”)

Tutorial.book : Chap3.frm 74 Sun Sep 8 16:44:46 1996

74 Open Implementations and Metaobject Protocols

Continuing to experiment with the newly designed functionality, here is
another program the designer believes the programmer might want to
write. It gathers a list of all classes that have multiple direct superclasses. It
works quite simply by iterating through a list of all the classes, collecting
those that have more than one superclass into a result list.

Multiple inheritance:finding in program

How Much Multiple Inheritance?
Which Classes Have Multiple Direct Supers?

function @classesWithMI () {
 var result = list();
 foreach (c, @allClasses())
 if (length(@classDirectSupers(c)) > 1)
 extend(result, c);
 return result;}

Exercise: Some cases of multiple inheritance are
potentially more problematic than others. In partic-
ular, the ‘diamond’ case is one of the most trouble-
some. As shown to the right, a diamond happens
when a class has two routes to a superclass other
than Object . In the figure, there is a diamond from
DisplayableCell to Position . Write a program
to find all diamonds. Your program should return a
list of diamonds where each diamond is itself a list
of the root and leaf node of the diamond.

Position

Cell

DisplayableCell

Displayable

Object

Tutorial.book : Chap3.frm 75 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 75

Another of the quality assurance programmer’s questions had to do with
slot inheritance. The question is, for a given slot in a given class, which
class was that slot actually defined in? There are different forms this sort of
functionality can take. The function shown here returns the name of the
first superclass that defines the slot.

Again, this is a simple function. It works by iterating through the class’s
ancestors (the class precedence list), looking for a class that includes the
slot name in its list of direct slots.

<$startrange>Slot:genealogy, finding

Slot Genealogy (1/2)

Where Did Slots in a Class Come From?

@slotOrigin(“Senator”, “margin”)
 --> “Elected”

function @slotOrigin (className, slotName) {
var c = @findClass(className);
foreach (ancestor, @classCPL(c))

 if (isIn(slotName,
 @classDirectSlots(ancestor)))
 return @className(ancestor);

return false;}

Tutorial.book : Chap3.frm 76 Sun Sep 8 16:44:46 1996

76 Open Implementations and Metaobject Protocols

Here is a somewhat different version of this facility that returns the names
of all the ancestors that define this slot name.

Question: How does one decide whether a function should accept a class name or. a class
description object?

Answer: In general, it is convenient to have interactive functions take class names. Func-
tions usually called by other functions should take class objects, because they can then
skip the step of obtaining the object from the name.

Exercise: The concept of diamonds of inheritance was presented in the exercise on
page 69. Edit the program you wrote for that exercise to report only diamonds in which
the class at the top of the diamond defines slots.

<$endrange>Examples:browsers; <$endrange>Slot:genealogy, finding

Slot Genealogy (2/2)

Finding all ancestors:
@slotGenealogy (“Senator”, “margin”)

--> (“Elected”)

function @slotGenealogy(className, slotName) {
var result = list();
var c = @findClass(className);
foreach (ancestor, @classCpl(c))

 if (isIn(slotName,
 @classDirectSlots(ancestor)))
 extend(result, @className(ancestor));
 return result;}

Tutorial.book : Chap3.frm 77 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 77

At this point the designer is beginning to feel confident that the functional-
ity she has designed does indeed address the programmer requests. To be
sure, she will of course try more tests.

Exercise: Ask yourself what tests would you try if you were the designer?

Exercise: Code up functions to compute each of the following: What is the average depth
of leaf classes? How many classes do or don’t define slots? Which slot names are used
more than once?

Anything Else to Try?

Tutorial.book : Chap3.frm 78 Sun Sep 8 16:44:46 1996

78 Open Implementations and Metaobject Protocols

Stepping back one can summarize by saying that the designer felt that pro-
grammers could make good use of having access to the inherent represen-
tation of their program, so she developed a clean abstraction of that
representation and has begun to test it. So far, her testing has show that
her proposed design is indeed useful and works well.

Question: Wouldn’t a good program browser be able to solve many of these programmer
questions? Why introduce this functionality instead?

Answer: It is true that a good browser could solve some of the programmer questions that
have come up. But note that an important property of the new functionality the designer
is developing is that it is programmable. This means that the application programmer can
use it to write programs which answer questions that are very specific to his particular
needs and that are unlikely to have been anticipated and included in a general-purpose
browser. So, while it might be a good idea for implementors to provide a browser in addi-
tion to these facilities, even a good graphical browser is not a replacement for them. Their
programmable nature makes them more open-ended and able to serve a wider range of
programmer needs.

Also note that, because the new functions are a documented part of TinyObjects, pro-
grams that use them will be portable, whereas most browsers tend to be specific to a par-
ticular implementation or platform.

<$endrange>Class:reification; <$endrange>Slot:reification; <$endrange>Subclass:reification; Reifi-
cation:class

Recap

A clean abstraction of the inherent representation of Tiny
Objects programs provides the programmer with a
powerful tool for addressing certain kinds of problems.

Tutorial.book : Chap3.frm 79 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 79

We will now watch as the designer turns back to the programmer requests,
and runs into an issue that her proposed design clearly does not address.
In response to this problem she will design an analogous interface for
generic functions and methods.

Once again, the designer’s first step in response to this problem is to step
back from its particular details to see what the programmer really wants;
and once again, it is straightforward, he wants information about the
generic functions and methods in his program. She sees this request as
requiring an extension of the functionality she has developed for classes,
and so she approaches the problem that way.

<$startrange>Examples:generic function applicability test

I Want to Know…

... whether a given generic function is applicable to objects
of a given class.

Tutorial.book : Chap3.frm 80 Sun Sep 8 16:44:46 1996

80 Open Implementations and Metaobject Protocols

The designer’s next step, again, is to understand what kind of relevant
information in inherent to TinyObjects will inherently maintain. The black
box with cloud marker on this slide indicates that once again, the object
system designer is thinking about what inherent aspects of Tiny Objects
implementation are relevant to this programmer problem. As shown, she
believes there should be a representation of generic functions, similar to
that for classes, that includes information from the generic function defini-
tion, as well as a list of methods defined on the generic function.

Generic function:information maintained for; <$startrange>Generic function reification

Representation of GFs

generic vote (who, issue);

name: vote
arglist: (who issue)
methods: (…)

 GF vote

Tutorial.book : Chap3.frm 81 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 81

And that a similar representation of methods should include information
from the method, as well as a connection to the generic function to which
the method is attached and the class to which the the method is special-
ized.

Method:information maintained for; <$startrange>Method:reification;<$startrange>Reifica-
tion:method

Representation of Methods

method vote (Senator vip, issue) {

if …}

generic function: #vote
specializer: #Senator
code: #code

 Method vote Senator

Tutorial.book : Chap3.frm 82 Sun Sep 8 16:44:46 1996

82 Open Implementations and Metaobject Protocols

She concludes that classes, methods and generic functions are thus all
interconnected as shown above.

Generic function: linkage with classes and methods; Method:linkage with classes and generic func-
tions; Class:linkage with methods, generic functions and subclasses

The Tie Back to Classes

method vote (Senator vip, issue) …

name: vote
arglist: (who issue)
methods: (...)

 GF vote Class Senator

 Method vote Senator

name: Senator
direct-supers: (...)
direct-slots: (state)
CPL: (...)
slots: (...)
direct-subs: (...)
direct-methods: (...)

generic function:
specializer:
code: #code

Tutorial.book : Chap3.frm 83 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 83

Having once again worked out a sense of what functionality should be
provided to the programmer, and been careful to ground that in the inher-
ent structure of Tiny Objects implementation, the designer must now pro-
ceeds once again to design an abstract interface to that inherent
implementation structure.

Repeat the Strategy

Since information about GFs and methods is inherently
managed by all implementations, the object system
designer can use the encapsulation properties of OOP to:

Provide the programmer with a clean, standardized
interface to that information, at only a small cost to object
system implementors.

The programmer can navigate among classes, methods
and GFs, examining important aspects of his programs.

Tutorial.book : Chap3.frm 84 Sun Sep 8 16:44:46 1996

84 Open Implementations and Metaobject Protocols

Here, then, is the new piece of proposed design.

Just as with the class accessors on page 67, to save space we will simply
say these accessors return the “natural” values, e.g., that @gfName returns
a string, and @gfMethods returns a list of method description objects.

Metaobject; Generic function:reification; Method:reification; Reification:method; Generic func-
tion:accessor functions; Generic function:metaobjects; Method:accessor functions; Method:metaob-
jects;@classDirectMethods

Readers for GF and Method Info

Implementations will provide objects that describe each GF
and method. These objects support a small set of readers:

Get GF objects (from the GF name): @findGf(“vote”)

Get method objects (from a class): @classDirectMethods

Readers: @gfName @methodGf
@gfArglist @methodSpecializer
@gfMethods @methodFunction

Tutorial.book : Chap3.frm 85 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 85

Having expanded her proposed design to include information about
generic functions and methods, the designer now resumes testing it, start-
ing with the problem from page 79 that prompted this expansion of the
design. The problem was that the programmer wanted to know when a
paricular generic function was applicable, that is whether there will be a
method to run if the generic function is called with an object of a given
class.

The figure above shows two different versions of this functionality the pro-
grammer might want to implement. The first simply says whether there is
a method applicable when a generic function is called with an argument of
a particular class. The second returns a list of the applicable methods.

As the designer now puts on the programmer’s hat and tries to implement
this functionality, remember that she must think only int terms of the pro-
posed extensions to Tiny Objects. That is, she can only think about what is
on slides with a scroll, not slides with a black box and cloud.

Is a Given GF Applicable?

@isGfApplicable(“vote”,
 “Senator”)

--> true

@methodGenealogy(“vote”,
 “Senator”)

--> (“Senator”
 “Elected”
 “Politician”)

Object

 Elected

Senator

Politician

• denotes vote Methods

Tutorial.book : Chap3.frm 86 Sun Sep 8 16:44:46 1996

86 Open Implementations and Metaobject Protocols

One approach to program @isGfApplicable is to use @gfMethods to
obtain the full set of methods for the generic function, and then to check
whether the specializer of any of those methods is either the class in ques-
tion or one of its superclasses.

The code above implements @isGfApplicable this way. It uses the
@isSubclass helper function to test whether its first argument is a sub-
class of its second argument.

Exercise: The test for subclass relationship above returns true if c1 and c2 are the same.
That is appropriate for this test, since methods defined on a class are applicable to that
class, not just its subclasses. But, it still might be useful to have a version of @isSubclass
that returned false if f c1 and c2 are the same. Write such a function, called
@isStrictSubclass .

GF Applicability

function @isGfApplicable (gfName, className) {
 var gf = @findGf(gfName);
 var c = @findClass(className);
 foreach (m, @gfMethods(gf)) {
 var spec = @methodSpecializer(m);
 if (@isSubclass(c,spec))
 return true;}
 return false;}

function @isSubclass(c1,c2)
 return isIn(c2,@classCpl(c1));

Tutorial.book : Chap3.frm 87 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 87

The code on this slide implements the alternative version of the generic
function applicability test --- it returns a list of all the methods applicable
when a generic function is called on an argument of a specific class.

Exercise: One problem with this implementation of @methodGenealogy is that the order
in which it returns the classes in is not necessarily the order of applicability of the meth-
ods. That is, it is not the same as the order in the class precedence list of the class named
className . Write a new version of this function which always returns the classes in class
precedence list order. Note that there are two ways to write this. One is to simply sort the
result of the existing function, and the other is to arrive at the methods “the other way,”
that is by going in from the classes in the CPL rather than from the generic function.

<$endrange>Examples:generic function applicability test; Method:genealogy,finding

Method Genealogy

function @methodGenealogy (gfName, className) {
 var result = list();
 var gf = @findGf(gfName);
 var c = @findClass(className);
 foreach (m, @gfMethods(gf)) {
 var specl = @methodSpecializer(m);
 if (@isSubclass(c, specl))
 extend(result, @className(specl));}
 return result;}

Tutorial.book : Chap3.frm 88 Sun Sep 8 16:44:46 1996

88 Open Implementations and Metaobject Protocols

At this point, there are many other tests the designer would try, to continue
to assure herself that the proposed design is indeed useful, elegant, and
easy to use. Some of these might cause her to go back and modify or
extend the design, others will just confirm that it works well.

Exercise: Test the proposed design by writing a procedure that finds all the generic func-
tions in a program. Use that procedure to write another one that computes the average
number of methods on all generic functions.

Exercise: Where is most of the “functionality” (methods) defined in your object-oriented
programs? Where is most of the “structure” (slots) defined? Root classes or leaf classes?
Write a set of procedures to help you answer these questions. What can you learn about
the modularity of your programs this way? About the degree to which you have followed
a well-established design methodology? About the design methodology itself?

Exercise: Currently there is no way for the programmer to find out about a class’s initial-
izer. They can’t, for example, write programs to see if a class has an initializer, or to see
how many argument’s a class’s initializer accepts. Taking on the role of the designer,
address this problem. What design would you come up with? What tests did you use?

Anything Else to Try?

Tutorial.book : Chap3.frm 89 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 89

Having tested the proposed design for power and usability, the designer
must now address the second aspect of testing -- to be sure that it is also
implementable. She is already reasonably confident that the new function-
ality is implementable. The fact that her design is rooted in a sense of the
inherent structure of TinyObjects gives her that confidence.

But she still must make certain that the new functionality is truly imple-
mentable. In this case there are two key questions: (i) how to make the
compile time information available at runtime, and (ii), does her data
abstraction provide sufficient implementation encapsulation.

Making such compile-time information available to the programmer at
runtime is not a fundamentally new problem, since this is not so different
from existing compilers that provide symbol tables for debugging at run-
time. Providing descriptions of classes, generic functions and methods is
just going one step further. In fact, a good TinyObjects implementation
would no doubt already provide many of these facilities to support its
debugging environment. In order to save space in the runtime image, the
information could even be stored in a file or a database and retrieved on
demand at runtime, just like symbol tables.

Implementation Strategy

Existing debugger implementation techniques support this.

Time

RunLoadCompile

Read

Symbol tables, class,
GF and method

descriptions

Write

Tutorial.book : Chap3.frm 90 Sun Sep 8 16:44:46 1996

90 Open Implementations and Metaobject Protocols

With respect to the degree to which her design provides good encapsula-
tion, the designer is also quite satisfied. The issue here is that she wants the
design to be sufficiently abstract that different implementors have the lee-
way they need to implement this functionality in the way that works best
for them.

Her design has one quite natural implementation in terms of objects with
one slot for each property, as shown in this slide and the next. But there are
many other possible approaches she feels the implementor could take. She
is confident about this because, in documenting the functionality that has
been added, she has been careful not to specify:

• how this information about classes is really stored in any particular
implementation, or

• whether these externally visible class description objects share struc-
ture with any internal structures of the implementation.

All she has documented is that the new functions exist, and what values
they return when called.

Encapsulation (1/2)

@className
@classDirectSupers

•
•
•

class @Class (Object)
 (name,
 directSupers,
 directSlots,
 classPrecedenceList,
 slots,
 directSubs,
 directMethods);

Tutorial.book : Chap3.frm 91 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 91

Exercise: Take a moment to think about the design and how well it encapsulates the
implementation. For example, consider that some implementors might use a seven col-
umn table to store information about classes: one row for each class, and one column for
each of the salient properties of a class. Or, some implementations might group the infor-
mation into objects, but keep the actual properties in a different format. Or, some imple-
mentations might want to keep the information in a relational database. Does the
proposed design provide adequate encapsulation for those internal implementations?
Can you think of an internal structure that a Tiny Objects implementor might reasonably
want to use that the proposed design does not adequately encapsulate?

At this point the designer becomes aware of encapsulation issues that her
design does not yet address: What is the status of the values the proposed
readers return? Is it possible for the programmer to do damage to the
implementation (or other parts of their program) by mishandling those
values? For example, what might happen if the programmer uses extend

to modify a list returned by @classDirectSupers ?

One Possible Implementation (2/2)

function @className (c) {
return c.name}

function @classDirectSupers (c) {
return c.directSupers}

•
•
•

...

Tutorial.book : Chap3.frm 92 Sun Sep 8 16:44:46 1996

92 Open Implementations and Metaobject Protocols

This is an instance of a general problem in designing a data abstraction ---
the designer must make a decision as to whether the implementor can pass
shared structure across the interface. On the one hand, passing shared
structure can be more efficient (i.e. @classDirectSupers need not cre-
ate a new list each time it is called). On the other hand, passing shared
structure can introduce robustness problems (i.e. if the programmer
mutates the list returned by @classDirectSupers).

No data structure sharing
 Provide only copies of internal structures.

Prevent shared structures from being changed.
 Read-only structures

Ask for shared data structures to be respected.
 Need clearly enumerated rules

Desired Implementor Freedom
A Range of Data Structure Sharing Policies

Shared-nothing

Shared-all

Tutorial.book : Chap3.frm 93 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 93

The designer must take a stance about what sub-range of the sharing spec-
trum the implementor will be free to choose. The designer must decide,
because the sharing policy can, in various ways, manifest itself to the pro-
grammer, and so it must be covered in the specification.

In this case, the designer chooses an extrremely conservative stance. She
will allow the implementor great leeway, by writing the documentation in
a way that prepares the programmer to expect that values returned by the
readers might be shared or copied. She does this by adding the two basic
rules shown on this slide to her proposed design.

Rules for Using Readers

For all the class, gf and method readers, the programmer
must:

• Not modify results obtained from the reader in any way.

• Not count on the values returned by successive calls to
a reader to be an identical datastructure (i.e. two identi-
cal calls to @classSlots may return different lists, even
though the will have the same elements).

Tutorial.book : Chap3.frm 94 Sun Sep 8 16:44:46 1996

94 Open Implementations and Metaobject Protocols

Satisfied now that her design is useful, powerful, usable and implemented,
the designer would proceed to actually publish it. Thus, the whole cycle
we have observed in this chapter can be seen on this slide...

Of course, in a real design situation, the process would not be nearly so
neat and tidy. There would be more instances of going back and funda-
mentally altering the design...

Also keep in mind that although this book presents the open implementa-
tion idea in terms of opening up the design of existing systems, there is no
reason...

The Design Cycle

Generalize

Design

Test:
Expressiveness
Implementability

Programmer
Problem

Tutorial.book : Chap3.frm 95 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 95

We now step back from observing the design process to make some general
observations about the nature and the new functionality the designer has
been developing. The perspective and terminology we will present is
important because it provides a principled distinction between the new
functionality and the original closed Tiny Objects. This distinction in turn
will enable a principled separation between the new and old interfaces,
and between the parts of the programmer’s program that use the new and
old interfaces. This will help to simplify the design as well as the user pro-
grams.

First notice that the Tiny Objects box is still mostly black, and that the orig-
inal interface has not changed at all. Any old TinyObjects program will still
run. What the object system designer has done is to reify some of the box’s
inherent internal information—the class, generic function and method
descriptions—and to provide a clean “side door” interface to them. The
term reify means to regard or treat an abstraction as if it had material exist-
ence. This is just what the designer has done with the class, generic func-
tion and method descriptions. Whereas previously they were an abstract or
implicit part of the implementation that could not be manipulated, the pro-
grammer can now grab hold of them as concrete objects. Reification;Reflection

Reification of Internal State

‘Side door’
@findClass
@className...

‘Front door’
class
method

 Senator
vote

Elected

Tutorial.book : Chap3.frm 96 Sun Sep 8 16:44:46 1996

96 Open Implementations and Metaobject Protocols

To draw out the difference between the old and new functionalities, it is
important to focus on the kinds of programs that use each one.

Programs written using the original TinyObjects interface are concerned
with senators and voting and the like. (Other programs will have pay-
checks or spreadsheets or some other domain as their basic subject matter).

On the other hand, programs written using the second interface are con-
cerned with other programs, in particular the programs written using the
first interface.

<$startrange>Base interface; <$startrange>Meta interface

Two Kinds of Program

class Senator (…)

 (...);

these programs are about
senators or paychecks or...

 these programs
 are about those programs

function @isGfApplicable()

… @gfMethods

 Senator
vote

Elected

Tutorial.book : Chap3.frm 97 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 97

To reflect this difference, the first kind of interface and program are called
the base-interface and base-program, since they are about the basic subject
matter for which the programmer is writing code (e.g., senators and their
voting behavior). The second interface and program are called the meta-
interface and meta-program, since they are one level of subject matter
removed—they are about base programs and their interactions with the
substrate.

Another way of thinking about this is that the objects manipulated by the
first kind of program represent senators (or whatever the basic subject mat-
ter might be) whereas the objects manipulated by the second kind of pro-
gram represent elements of the first kind of program.

Black-box:icon;<$endrange>Base interface;<$endrange>Black-box:partial opening;
<$endrange>Meta interface

Base and Meta
Distinguishing Interfaces and Programs

Base-
 interface
 program Meta-

 interface
 program

class Senator (...)
 (...);

function @isGfAppl..
 .. @gfMethods .. Senator

vote

Elected

Tutorial.book : Chap3.frm 98 Sun Sep 8 16:44:46 1996

98 Open Implementations and Metaobject Protocols

With this terminology in hand, we can now go back and add a piece of doc-
umentation to the specification of the new functionality, to explain the
meaning of the “@” prefix naming convention.

<IndexCode>@ <Default Para Font> Sign convention; Metaclass; Metaobject protocol

The Use of “@”

Names of meta-level functions begin with an “@” sign.

Tutorial.book : Chap3.frm 99 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 99

Class:metaobjects; Reification:method; Generic function:metaobjects; Reification:class

The particular meta-interface being developed here is object-oriented in
that the data structures it exposes are objects. In such an object-oriented
meta-interface, the objects that are the reification of inherent implementa-
tion components are called metaobjects, and the meta-interface itself is
called a metaobject protocol. We use the term protocol, rather than inter-
face because it better fits with the kinds of capabilities that will be intro-
duced in later chapters.

So far, the designer has said nothing about the class of the metaobjects, but
because that is coming up in the next chapter, we also introduce the term
metaclass here. The class of any kind of metaobject is called a metaclass.
While traditionally, the term “metaclass” has been used only for the class
of class metaobjects, that restriction is best thought of as a historical acci-
dent. The more general use presented here works better for the more pow-
erful metaobject protocols we will be presenting.

Note that the object in metaobject protocol indicates that the meta-interface
is object-oriented. It is not a statement about base-interface. So, for exam-
ple, one could have a metaobject protocol for a non-object-oriented pro-
gramming language, or for a substrate that wasn’t a programming
language at all (i.e. file systems, virtual memory systems, relational data-

Terminology

Objects that are the reification of inherent implementation
components are called metaobject s:

class metaobjects represent classes
GF metaobjects represent generic functions
method metaobjects represent methods

The documented interface to the metaobject is called a
metaobject protocol .

The classes of metaobjects are called metaclasses .

Tutorial.book : Chap3.frm 100 Sun Sep 8 16:44:46 1996

100 Open Implementations and Metaobject Protocols

bases etc). Similarly, one could have a non-object-oriented meta-interface
for an object-oriented base-interface (although that might be less likely).

Metaobject protocol:designer

Tutorial.book : Chap3.frm 101 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 101

The metaobject protocol developed so far is an introspective protocol. It
provides the programmer with a principled way to examine selected
implementation state, such as information about the names of a class’s
slots, or of its superclasses. The protocol is principled in the sense that it
allows access to this information without forcing implementations to
expose the internal data structures they actually use to represent it.

Any kind of meta protocol could be introspective in that sense. Metaobject
protocols in particular work by requiring implementations to support
metaobjects which programmers then use as sources of information about
the implementations.

Introspection

Question: What happens if an optimized implementation compiles away the runtime dis-
patch of generic functions to speed things up? Then it won’t be looking at the CPL any-
more. I wrote a function @methodCallOrder which uses the CPL to analyze which
methods will be called in order; won’t it break?

Answer: No, that function will not break. The MOP specification requires implementa-
tions to provide a correct CPL. This does not mean that those implementations need to use
the CPL for dispatch. But their observable behavior must be as if they were using the CPL.

Introspective Protocol

An introspective meta-protocol allows examination of
inherent implementation structure, mediated through an
appropriate abstraction layer.

An introspective metaobject protocol consists of
mechanisms for obtaining metaobjects and readers to
examine their state.

Tutorial.book : Chap3.frm 102 Sun Sep 8 16:44:46 1996

102 Open Implementations and Metaobject Protocols

Put yourself in the shoes of a TinyObjects programmer, who needs to write procedures
like @isGfApplicable or @findDiamonds. How difficult would it be to write these without
the introspective MOP developed in this chapter? Try to implement the procedures @isG-
fApplicable and @methodGenealogy of page 85 and page 87 without it.

Now ask yourself the question, is it worth extending TinyObjects with this new function-
ality? Do the potential payoffs for programmers outweigh the potential costs for TinyOb-
jects implementors? On what grounds did you base your argument? Esthetic, economic..?

The following material will show how other kinds of programmer needs
can be addressed by providing different kinds of access. For programmers
needing nothing beyond the introspective capabilities developed in this
chapter, this would be a coherent place to stop. The current MOP is consis-
tent. It meets a given set of programmer needs, and can be implemented
robustly and efficiently.

This is an important point: MOP design is not all-or-nothing. MOPs need
only have enough power to satisfy actual programmer needs. Subsequent
chapters will show how classes of programmer needs beyond introspec-
tion can be satisfied through more advanced degrees of opening substrate
implementations. This will be accomplished through commensurately
more sophisticated MOP design techniques.

Introspection —examination of selected system
internals.

Explicit Invocation —enabling programs to explicitly
invoke substrate operations, bypassing syntax in some
cases.
Intercession —metalevel specialization that adds to or
modifies existing features of the base object system:

Adding State
Adding Behavior
Modifying Behavior
Adjusting Performance

Summary

Tutorial.book : Chap3.frm 103 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 103

Tutorial.book : Chap3.frm 104 Sun Sep 8 16:44:46 1996

104 Open Implementations and Metaobject Protocols

Tutorial.book : Chap3.frm 105 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 105

Tutorial.book : Chap3.frm 106 Sun Sep 8 16:44:46 1996

106 Open Implementations and Metaobject Protocols

Tutorial.book : Chap3.frm 107 Sun Sep 8 16:44:46 1996

But I Wish I Knew… 107

Tutorial.book : Chap3.frm 108 Sun Sep 8 16:44:46 1996

108 Open Implementations and Metaobject Protocols

Tutorial.book : Chap4.frm 109 Sun Sep 8 16:44:46 1996

The programmer can now enjoy “voyeuristic pleasures.” He can look into
the substrate through well-defined portholes, and he can use the resulting
information towards filling his needs.

He cannot yet change how the substrate behaves. While this will be one of
the ultimate goals, there is an intermediate step in between the introspec-
tive capabilities introduced in the last chapter and the ability to modify
substrate behavior. Notice that at this point the programmer cannot even
effect anything in the substrate—he cannot cause events to happen. This
chapter begins to provide that additional power.

Chapter 4 But I Wish
I Could
Get At…

Tutorial.book : Chap4.frm 110 Sun Sep 8 16:44:46 1996

110 Open Implementations and Metaobject Protocols

The next several pages (to page 112) show the programmer explaining how
their system works, leading up to a description of the problem they are
having on page 113.

Examples:object creation, class known at runtime

Going to the Zoo…

I am working on a computer game about cross-breeding of
animals. The different kinds of animals are displayed on
the screen. Children can combine them and add features,
building a genealogy of fantasy animals. When a child
points to a kind of animal, I want to create one each of all
the kinds of animals that have been bred from it.

I want to implement it with TinyObjects.

Tutorial.book : Chap4.frm 111 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 111

Graphically, the program looks like this:

Each species of animal is displayed on the screen with the attributes of that
species. The arrows indicate descendance of one species from another.

When a child clicks on a species, the system should create one animal for
that species and every species below it.

Because this structure is similar to a multiple-inheritance class graph, and
because TinyObjects has now been enhanced with the new funtionality
from the previous chapter, the programmer wants to use TinyObjects to
implement their system.

A Species Tree

Bear
carnivorous
predatory
speedy

Bunny
soft
cuddly
shy

Bearunny
carnivorous soft
predatory cuddly
speedy shy

Animal

Giraffe
longNecked
treeEating
saltLicking

Tutorial.book : Chap4.frm 112 Sun Sep 8 16:44:46 1996

112 Open Implementations and Metaobject Protocols

The programmer has chosen to model species as classes. The attributes of
each species are modeled as slots.1

By doing this, a program that generates the picture on page 111 is similar to
programs from Chapter 3. This is just navigation through the class graph
(using @classDirectSubs and @classDirectSupers), finding the
names of classes (using @className) and finding out about available
slots (@classDirectSlots and @classSlots).

Similarly, the programmer’s idea is that when a child clicks on a species,
their program would first access the metaobject of the selected class, next
use it to find all subclasses and then create an object for each of those sub-
classes.

1. The designer recognizes that this is a distortion of the concept of slots, since they are
meant to hold state in each object of a class, not attributes that are valid for the entire
class. We will return to address this problem in Chapter 5.

Species Are Represented as Classes

class Animal () ();

class Bunny (Animal)
 (soft, cuddly, shy);

class Bear (Animal)
 (carnivorous, predatory, speedy);

class Bearunny (Bear, Bunny)
 (...);

.

..

Tutorial.book : Chap4.frm 113 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 113

So far so good. But on this page we see the problem the programmer is
having.

Here is the central piece of the code the programmer tried to write. It
makes use of the @allSubs function from page 72. (Recall that this func-
tion took a class and returned a list of all its subclasses.) The makeAni-

mals code above just runs through that list, making an object from each
subclass.

Or tries to, but the problem is that the primitive new requires the name of
the class to be fixed at compile time. When TinyObjects was designed, the
designer assumed that the name of classes to be instantiated would always
be known at the time programs were written. This limitation of the base
interface prevents the programmer from writing their code this way. Note,
however, that implementations certainly do create objects at runtime. It
seems, therefore, that the programmer is not asking for anything impossi-
ble or even particularly difficult, since the meta-interface introduced in the
previous chapter is limited to introspective facilities, it is not powerful
enough to help out either.

I’d Like To …

function makeAnimals (c) {
var result = list();
foreach (sub, @allSubs(c))

extend(result, new(sub));
return result;}

But this won’t work because new needs the class
name to be known at compile time.

?

{

Tutorial.book : Chap4.frm 114 Sun Sep 8 16:44:46 1996

114 Open Implementations and Metaobject Protocols

Faced with this problem the designer now returns to the question of what
it would mean for TinyObjects to provide such functionality. Again, she
begins by wondering what that would be like from the TinyObjects imple-
mentor’s perspective.

As shown in the figure, the current situation from the implementor’s per-
spective is that the internal object creation mechanism only has one inter-
face through the new primitive which only works with class names fixed at
compile time.

But the object creation mechanism the programmer wants access to inher-
ently does exist inside the implementation.

Finding Relevant Functionality

class Bunny(Animal) …;

new Bunny()

Internal object
creation

mechanics

Tutorial.book : Chap4.frm 115 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 115

The programmer has already given the designer the seed of an idea for the
new interface to object creation—through the meta-interface using class
metaobjects.

She now considers adding a new function to the meta-interface, called
@new, that takes a class metaobject and returns an object of the corre-
sponding class.

Note that just as in the previous chapter the designer is not thinking about
the details of any one TinyObjects implementation. Instead, she is thinking
at a middle-level of abstraction—between the details of specific implemen-
tations and the documented interfaces—about how any TinyObjects imple-
mentation inherently has to work.

 Reification:object creation

New Interface to Object Creation

class Bunny(Animal)...;
new Bunny()

Animal

Bunny

Internal object
creation

mechanics

@new(@findClass(“Bunny”))

Tutorial.book : Chap4.frm 116 Sun Sep 8 16:44:46 1996

116 Open Implementations and Metaobject Protocols

The designer has already reified classes to provide limited access to infor-
mation about classes that is maintained within implementations. But this
makeAnimals programmer now exposes another problem. Sometimes a
substrate black box hides not just state that would be useful for the pro-
grammer to have access to, but also pieces of functionality that are inher-
ently present in every implementation, would be useful to invoke from the
outside, but are not accessible from the base interface explicitly. In the cur-
rent example, this functionality is the object creation mechanism underly-
ing the new primitive. In the figure, this is represented as a cloud.

Allowing the programmer to invoke this functionality explicitly would
solve his problem.

Tutorial.book : Chap4.frm 117 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 117

Here is the designer’s latest proclamation, signing this capability into law.
@new is simply a function the programmer may now call with a class
metaobject to have an object of the corresponding base level class created.
From now on the programmer is allowed to write programs which create
instances of classes from class metaobjects. That is, write code that first
computes what class it wants to make an instance of and then makes the
instance. (As opposed to the class name being hardwired into the code.)

Note that this piece of protocol is qualitatively different from those in the
previous chapter, which enabled only introspective capabilities. This piece
allows the programmer to cause action in the substrate—in this case the
creation of objects.

 Reification:object creation; Object:creation

Making Objects
Another Protocol Expansion

Given a class metaobject, the programmer may create
objects of the corresponding class by calling @new.
This meta-level function operates directly on class
metaobjects to create objects. Like new, it accepts a list of
initargs. The following calls are equivalent:

@new(@findClass(“Bunny”), list())
new Bunny()

Tutorial.book : Chap4.frm 118 Sun Sep 8 16:44:46 1996

118 Open Implementations and Metaobject Protocols

Now the problem with the program of page 113 can be resolved. Just as in
the previous chapter, the designer must test the new functionality to see
that it meets programmer needs. The code above uses the @newinterface to
object creation functionality to enable runtime object creation.

So, the new functionality does indeed solve this kind of programmer prob-
lem.

 Examples:Object creation, class known at runtime

Making Those Animals

function makeAnimals (c) {
 var result = list();
 foreach (sub, @allSubs(c))
 extend(result, @new(sub, list()));
 return result;

Tutorial.book : Chap4.frm 119 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 119

But this does not solve all the programmer’s problems.1 He would also like
to allow children to create new species of animals. When they click on
Bearunny and Giraffe, a new species of animal should be created, with all
the inheritance done right.

<$startrange>Class:customization; Examples:class creation, specifications known at runtime

1. Keep in mind that these frequent shortcomings of the MOP are due to the fact that for
the purpose of teaching the material, TinyObjects was initially designed (and imple-
mented) with no MOP at all, so that we could use its shortcomings to introduce new
material. In a real design, at least some of these needs would be anticipated and han-
dled properly by the initial MOP that is delivered with the substrate.

How About New Species of Animals?

I want the kids to create new species of animals by
clicking on animal classes. How can I implement that?

Bearunnyraffe
longNecked carnivorous cuddly
treeEating predatory soft
saltLicking speedy shy

Giraffe
longNecked
treeEating
saltLicking

Bearunny
carnivorous cuddly
predatory soft
speedy shy

Tutorial.book : Chap4.frm 120 Sun Sep 8 16:44:46 1996

120 Open Implementations and Metaobject Protocols

The designer’s first step is to analyze what the programmer needs.

In a sense, the programmer is asking for access to a function with the func-
tionality of @newClass. The function arguments would be similar to those
of class : a class name, a list of superclasses and a list of slot names.

Analysis

The programmer implementing this wants the ability to
define new classes on the fly:
@newClass(“ Bearunnyraffe ”,

list(“Bearunny”, “Giraffe”),
 list())
 --> #Bearunnyraffe

@new(@findClass(“Bearunnyraffe”), list())
 --> #<Bearunnyraffe 1>

But only class knows how to construct classes.

New class

Object of new class

?

Tutorial.book : Chap4.frm 121 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 121

Class:definition

Turning to the implementor’s perspective, the designer draws this picture
of the current situation. It shows that only the base interface can be used to
define classes. The meta-interface can be used to inspect the existing class
definitions. It also shows that the details of executing a class definition
statement are internal to a particular implementation, which means that
they are free to differ. This is represented by the cloud around the class cre-
ation mechanics. The solid arrow out of the cloud indicates that all imple-
mentations have to create a class metaobject as required by the
introspective protocol of Chapter 3.

The fact that the internal mechanics of defining a class also creates corre-
sponding class metaobject gives the designer an idea for a coherent meta-
interface extension: what if this also worked in reverse? What if the pro-
grammer were allowed to create a class metaobject, and this act of creation
caused implementations to create a corresponding base class?

Class Definition Revisited

class Bearunny (...) (...);

Internal object
creation

mechanics

Create class
metaobject

Tutorial.book : Chap4.frm 122 Sun Sep 8 16:44:46 1996

122 Open Implementations and Metaobject Protocols

Note, however, that the protocol fits naturally into the model the meta-
level programmer has built up in his mind so far. In reality, class metaob-
jects are merely representations of the parts of an implementation‘s state
that are relevant to base level classes. Implementors are free to make the
metaobjects more or less coupled to the internal structures that actually
implement classes. But as long as the programmer uses only documented
operations, he can think of metaobjects as really being the classes they rep-
resent.

If the MOP designer now allows the programmer to create class metaob-
jects and to have that creation at the representational level actually trigger
the creation of base level classes at the implementation level, then the pro-
grammer gets to work that much more comfortably within the world the
MOP designer is creating for him. The MOP designer is turning the purely
introspective interface into an “effective” interface, in the sense that as the
programmer manipulates the components of the interface, he is effecting
events in the implementation.

Tutorial.book : Chap4.frm 123 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 123

This slide shows the designer speculating about what it would be like to
allow programmers to define classes at runtime by creating class metaob-
jects. The dashed arrow indicates the “inverse causality” under consider-
ation.

The designer likes the way this is taking shape, but right away she sees that
several questions must be answered, including: what is the name of the
documented metaclass programmers can instantiate1 and what initargs
does that class take?

1. The slide assumes it will be@class.

New Interface to Class Definition

class Bearunny (...) (...);

Internal object
creation

mechanics

Create class
metaobject

Tutorial.book : Chap4.frm 124 Sun Sep 8 16:44:46 1996

124 Open Implementations and Metaobject Protocols

With respect to the documented name of the metaclass, the designer thinks
the simple @class would be fine. With respect to the initargs, the problem
is only slightly harder. Clearly the initargs must include everything that is
essential to the definition of a class (i.e., everything included in a use of the
class primitive).

But, because this is a meta-level operation the designer thinks that the form
of the initargs should be consistent with the other operations in the MOP.

Programmers Creating Class MOs

@Class could be the documented metaclass name.
Initargs for making instances of @class could be:

Name: “Bearunny”

Direct supers: list(@findClass(“Bear”),
@findClass(“Bunny”))

Direct slots: list()

List of class metaobjects

List of slot names

String

Tutorial.book : Chap4.frm 125 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 125

Testing this proposed new functionality here is the function the program-
mers needed to implement his animal creation program. Since new

requires a list of class metaobjects, the helper function @findClasses is
introduced to produce a list of class metaobjects from a given list of class
names.

The new functionality seems to be what is needed so the designer decides
to go ahead and make it official.

Making Custom Classes (1/2)

function @newClass(className,
directSupers,
directSlots) {

 new @Class(className,
 @findClasses(directSupers),
 directSlots);}

function @findClasses (classNames){
 var result = list();
 foreach (name, classNames)
 extend(result, @findclass(name));
 return result;}

Tutorial.book : Chap4.frm 126 Sun Sep 8 16:44:46 1996

126 Open Implementations and Metaobject Protocols

Class:creation through explicit invocation; Class:definition; Metaobject:creation

Here is the documentation of this new meta-level funtionality that makes it
official. Because programmers are now able to make (meta-)objects of class
@Class , and because this action causes base level class definition, they can
now define base level classes even when their names, superclasses, and
slots are not known at compile time.

Question: Is the designer making guarantees about how the implementation actually
works? Is she saying that every class actually is an instance of @Class on the inside?

Answer: No, the designer has not required that classes really have to be instances of
@Class . What she has promised about all implementations is that (i) the class definition
expression class will cause the proper class metaobject to be created and, inversely, (ii)
that meta-programs calling @new on @class will cause a new base level class to come
into existence. Implementations remain free to have any additional datastructures they
want as part of classes. They can maintain information about classes that is not required
by the protocol, they can use any data structures they want for maintaining classes inter-
nally. They must only (i) ensure that the meta-level abstraction always reflect what is hap-
pening in the implementation and that (ii) meta-level operations truly are first-class
operations that have their intended effect in the implementation.

Documenting Class Making

• Programmers may instantiate @Class to create class
metaobjects.

• This will cause the definition of a corresponding base
level class.

• Required initargs for creating class metaobjects are:

name a string
direct supers a list of class metaobjects
direct slots a list of strings

Tutorial.book : Chap4.frm 127 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 127

Here is a graphical view of how a call to @newClass will work. Of course,
you’re glossing over how you manage to come up with a name that makes
sense.

Class:customization; Examples:class creation, specifications known at runtime

Making Custom Classes (2/2)

@newClass(“Bearunnyraffe”,
 list(“Bearunny”, “Giraffe”),
 list())
 --> #Bearunnyraffe

Bearunny
 soft...

Giraffe
 saltLicking...

Bearunnyraffe
soft saltLicking...

Tutorial.book : Chap4.frm 128 Sun Sep 8 16:44:46 1996

128 Open Implementations and Metaobject Protocols

Iterating on her work, the designer decides to make the analogous exten-
sions for generic functions and methods. These extensions allow program-
mers to create generic function and method metaobjects, promising that
through these acts of creation, the actual generic functions and methods
will be created by the underlying implementations.

To save space, the work of developing the design is elided. Only the final
documentation is shown above.

 Generic function:addition of methods; Generic function:creation through explicit invocation;
Generic function:customization: Method:addition to generic function; Method:creation through
explicit invocation; Metaobject:creation

GFs and Methods Are Analogous

• The programmer can make objects of class @Gf.
The initargs are name and arglist.

• The programmer can make objects of class @Method.
The initargs are specializer and function.

• The programmer can call @addMethod to attach a
method to a generic function.

All these will cause definition of the corresponding base
level components.

Tutorial.book : Chap4.frm 129 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 129

Here is an example of how programmers can write programs that create
generic functions and methods for them, and how programs can then
invoke those generic functions. The first new expression creates a generic
function metaobject. The two arguments, “makeNoise” and list(“ani-

mal”) represent the name and argument lists of the new generic function,
respectively.

The @addMethod expression retrieves the new generic function metaob-
ject, creates a new method metaobject specialized on the Bear class, with
the function bearGrowl as its body, and then adds the method to the
generic function. The @findFunction takes a function name and returns
a pointer to that function.1

Finally, a call to @applyGf is used to invoke the new generic function and
method with a Bear object (smokey).

1. Assume the functionbearGrowl has already been defined.

GF and Method Creation

new @Gf(“makeNoise”, list(“animal”))

@addMethod(@findGF(“ makeNoise ”),
 new @Method(@findClass(“Bear”),
 @findFunction(“ bearGrowl ”)))

@applyGf (@findGf(“makeNoise”), list(smokey))

Tutorial.book : Chap4.frm 130 Sun Sep 8 16:44:46 1996

130 Open Implementations and Metaobject Protocols

Stepping back from the designer’s work, we call the new functionality
developed in this chapter an explicit invocation meta-protocol because it gives
the programmer explicit access to internal mechanisms that are otherwise
hidden partially or completely by the base interface.

In some ways, explicit invocation meta-protocols can be characterized as
allowing the programmer to bypass the syntax of the base interface. (@new

is a good example of this). But, the ability to explicitly invoke substrate
operations can be more powerful. It can also permit invocation of opera-
tions which are not available at all with the base interface. For example, the
meta-interface for a virtual-memory system might provide explicit access
to page-in and page-out operations in order to allow programmers to opti-
mize the virtual memory performance of their programs.

Explicitly Invoking Operations

Direct access to the metaobjects and the operations that
implement the object system features allows the
programmer to:

• Bypass the normal user interface.

• Trigger actions not accessible via the base level
interface.

A metaobject protocol which provides this capability is
called an explicit invocation meta-protocol .

Tutorial.book : Chap4.frm 131 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 131

By now, other uses of explicit invocation protocols are probably evident.
Apart from the obvious applications of browsing, editing and debugging,
some other examples are program transformations or applications in the
area of knowledge representation.

Exercise: What other uses can you think of for the TinyObjects MOP extensions developed
in this chapter?

Exercise: Can you think of additional explicit invocation meta-protocol that should be
added to TinyObjects? What about giving programmers control over the garbage collec-
tor?

Exercise: Some virtual memory systems do in fact allow programmers explicit access to
mechanisms like page-in and page-out. What other explicit invocation meta-protocols can
you find in existing virtual memory systems? Extend your paper design of a MOP for vir-
tual memory form the previous chapter to included appropriate explicit invocation sup-
port.

Other Uses of Explicit Invocation

• Variety of browsers, editors and debuggers

• Transforming programs from one language to another

• Computer learning: generating new classes represent-
ing combinations of facts

Tutorial.book : Chap4.frm 132 Sun Sep 8 16:44:46 1996

132 Open Implementations and Metaobject Protocols

In order to extend the protocol, MOP designers must show how their new
extension would be useful, and how the extension cleanly builds on exist-
ing notions. In this chapter, for example, the designer builds on the existing
metaobject concept by allowing programmers to create those metaobjects.
This helps keep the system coherent.

Regarding implementability, we first note that, again, MOP designers are
not asking implementors to provide any new internal functionality. All
they ask is that programmers provide operations that allow programmers
to trigger that already existing funtionality. Let us acknowledge a question
that may come up for readers familiar with compiling environments.

Criteria for MOP Design
Standards New Capabilities Must Meet

• Usefulness

What is the new capability good for?
Does it leave programmers with a coherent system?

• Feasibility of implementation

Can it be implemented robustly?
Can it be implemented efficiently?

Tutorial.book : Chap4.frm 133 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 133

When coming from a compiling environment, one is used to pieces of
information and certain actions not being available at runtime. Earlier, in
Chapter 3, information about classes, generic functions and methods was
made available at runtime. Now the ability to make classes is also shifted
from compile time to runtime. As mentioned previously, this kind of
“time-shifting” is familiar from mechanisms such as compilers leaving
symbol tables accessible for debuggers to use at runtime. Moving actions
normally performed at compile time to runtime is a bit more unusual. But
even that is done to some extent by incremental compilers. We prefer to
defer details of this capability until Chapter 7 where we will discuss tech-
niques for managing the shift of information and actions in time.

Meanwhile, it is best to think a bit more in terms of an interpreter model
where information and actions are accessible at all times.

Suspend Efficiency Concerns

Class, GF and method
descriptions as well as
other interpreter state.

Time

RunLoadCompileObj model
design

Compiler
 design Interpret

RunLoadCompile
Interpret

Tutorial.book : Chap4.frm 134 Sun Sep 8 16:44:46 1996

134 Open Implementations and Metaobject Protocols

For the examples we presented here, the ordering of explicit operation
invocations is no more or less a problem than they already were. Program-
mers could create methods before defining generic functions for them, or
they could try to specialize methods on classes that were not yet defined,
even before any metalevel interface came into existence. Any given imple-
mentation will be no more or less resilient to such activities now that the
MOP presented in this chapter has been introduced.

When operations which had not previously been accessible from the base
interface at all become available for explicit invocation, more care may be
needed to avoid introducing new failure modes. Note, however, that any
additional checking an implementation might perform to avoid such fail-
ures can be bypassed when the implementation performs its own invoca-
tion of these operations.

This brings us to the question of performance, which, for now, is no more
interesting than the question of robustness.

Explicit invocation:robustness in; Robustness:explicit invocation of

Robustness

The only danger would be for programmers to call the new
operations in the wrong order.

If the operations are available through the base level
anyway, this is not a new complication.

Runtime usage checking might be necessary.

Tutorial.book : Chap4.frm 135 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 135

Time shifting techniques covered in Chapter 7 may be required if opera-
tions were previously only accessible at compile-time. Other than that, the
implementations are asked merely to allow explicit triggering of opera-
tions that were being performed anyway. Performance is therefore not a
major concern to us right now.

Performance

Other than, possibly, time shifting, nothing new is required
of the implementation.

Call sequence error checking needs to be done for calls
from outside only.

Tutorial.book : Chap4.frm 136 Sun Sep 8 16:44:46 1996

136 Open Implementations and Metaobject Protocols

We have been talking about how allowing programmers to directly manip-
ulate “real” meta-objects can help with a number of problems where the
existing user interface to a substrate is deficient.

Did the discussion bring up any similar sorts of problems in your mind?

Anything Else to Try?

Tutorial.book : Chap4.frm 137 Sun Sep 8 16:44:46 1996

But I Wish I Could Get At… 137

In this chapter we watched as the designer added two simple but impor-
tant features to the TinyObjects MOP. Whereas the introspective MOP in
the previous chapter only supports inspecting meta-level states, the
explicit invocation MOP of this chapter allows the programmer to cause
action in the substrate.

With both introspection and explicit invocation protocols there has been a
sense that the new funtionality has been in some sense, “there all along.”
All the designer needed to do was come up with a clean abstraction and
address certain efficiency issues.

In the next few chapters we will see the designer go much further. Her
approach of giving programmers access to that which would previously
have been considered internal to TinyObjects will cause more significant
changes in how TinyObjects is implemented, and give programmers corre-
spondingly more significant power. In the next chapter the designer will
add MOP support that allows the programmer to add certain kinds of new
features to TinyObjects.

Summary
Introspection —examination of selected system

internals.
Explicit Invocation —enabling programs to explicitly
invoke substrate operations, bypassing syntax in some
cases.
Intercession —metalevel specialization that adds to or
modifies existing features of the base object system:

Adding State
Adding Behavior
Modifying Behavior
Adjusting Performance

Tutorial.book : Chap4.frm 138 Sun Sep 8 16:44:46 1996

138 Open Implementations and Metaobject Protocols

Tutorial.book : Chap5.frm 139 Sun Sep 8 16:44:46 1996

So far xxx

The cost to implementors has been modest, they have only been asked to
expose information and functionality that is inherently part of any Tiny-
Objects implementation. Moreover, because the protocol designer was
careful to ensure that the documented MOP is a clean abstraction of imple-
mentations, implementors have appropriate leeway within which to craft
their specific implementations.

The next two chapters explore a new kind of problem, in which the pro-
grammer wants more than enhanced access to what is already there,
instead he wants TinyObjects to provide some additional or different func-
tionality. Rather than asking the programmer to “code around” the defi-
ciencies in TinyObjects, the MOP design will take the bold step of

Chapter 5 But I Wish It Had
This Extra
Feature…

Tutorial.book : Chap5.frm 140 Sun Sep 8 16:44:46 1996

140 Open Implementations and Metaobject Protocols

designing a protocol that allows the programmer to actually change the
behavior of TinyObjects.

This is where the decision to use object-oriented programming in the meta-
protocol—to have a metaobject protocol—will come into its own. It will
make it possible to ensure that programmer changes to TinyObjects behav-
ior have appropriately localized effect. This scope control is a key element
in ensuring that metaobject protocols are an appropriate tool for software
engineering, instead of a fragile and dangerous hack.

Tutorial.book : Chap5.frm 141 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 141

Neither the ability to inspect class metaobjects introduced in Chapter 3, nor
the explicit invocation capabilities of Chapter 4 will help the programmer
cope with this problem. Without improvements to the evolving metaobject
protocol, he would have to resort to techniques such as shell scripts and
makefiles, in the case of Unix systems, or comparable tools in other envi-
ronments. While such solutions are workable and even common, they tend
to be complex, fragile and non-portable.

Exercise: Using the facilities available in your environment, implement this functionality
for yourself. You will want to design a special syntax for annotating a class definition with
the author, and then have a preprocessor that goes through a file collecting the author
information and storing it in a database file. Your compile driver will need to be sure to
maintain coordination between the database file and each set of binaries.

The intuition behind this example is that since TinyObjects is already main-
taining so much other information about a class (superclasses, slots etc.), it
might be easier to ask it to maintain the author information as well.

<$startrange>Class:adding information to;Class:customization; Examples:variables on classes;
<$startrange>Metaobject:adding information to

I Am a Class Library Contractor…

…and I need the ability to record the author of each class
and access that in the runtime image.

How can we do this?

Tutorial.book : Chap5.frm 142 Sun Sep 8 16:44:46 1996

142 Open Implementations and Metaobject Protocols

To address this request, the MOP designer sits down with the programmer
to collaborate on a solution. In doing so, she employs a useful trick to orga-
nize the dialogue: they begin by focusing on what the desired functionality
would have looked like if it had been part of TinyObjects in the first place.
They extend the syntax and behavior of the object system on paper, until
they are satisfied that they could cleanly use the new functionality if the
object system had the respective extensions.This approach allows them to
get a clear sense of what the programmer really wants, before worrying
about what new (or existing) metaobject protocol is required to support it.

In this case, the author information would ideally go right into the class
definition, using a syntax that allows the programmer to specify an author
only when he wants to. An accessor could then extract it from the class’s
metaobject anytime.

Analysis

This programmer wants to write something like this:

class Phone (CommDev)
(number)

 author: “Fred”;

@classAuthor (@findClass(“Phone”)) --> “Fred”

Tutorial.book : Chap5.frm 143 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 143

Here is a graphical view of presenting what the programmer is asking for.
By adding the author information to the definition of his Phone class, he
wants that information stored in the corresponding class metaobject.

Programmer Injecting State

class Phone (CommDev)
 (number)

author: “Fred”;

Internal class
creation

mechanics

Programmer wants to cause
more information to be kept

in class metaobject

 Phone
 “Fred”

Tutorial.book : Chap5.frm 144 Sun Sep 8 16:44:46 1996

144 Open Implementations and Metaobject Protocols

One possibility would be for the MOP designers to add the concept of class
authorship directly into all class metaobjects and to provide a respective
reader and initialization mechanism. But that would be inappropriate,
because it would solve much too narrow a problem. The next day, other
programmers might want to add a creation date or other information to
class metaobjects which would then require renewed intervention of MOP
designers and object system implementors.

Another problem with this suggestion is that all TinyObjects classes would
have this author information, even the ones written by programmers who
do not need it. There would be no way to limit the scope of this change. If
more such information were added over time, the implementation would
get more and more bloated, forcing all programs to pay for all new pieces
of information maintained.

A First Attempt

Proposal: The MOP designer adds an author slot and
appropriate initialization mechanisms to class
metaobjects.

Bad because:

• Not general enough: what if more information is needed
later?

• No control over scope of modification: all classes would
have author information.

Tutorial.book : Chap5.frm 145 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 145

In essence, what is needed is class-specific storage that the programmer
can control. The problem is to find a meta-interface extension for providing
such a facility that is powerful enough to do the job, yet fits into the model
of the object-oriented meta-interface developed so far.

The programmer already has the notion that he can make class metaobjects
by instantiating @Class . The MOP interface could build on this notion by
allowing the programmer to subclass @Class . He could add slots in such a
subclass to hold any additional information he might want to maintain.
One example could be an author slot.

Searching for a More Subtle Touch

Resulting conclusions:

Only some class metaobjects should carry extra info

More than one kind of class metaobject is needed

More than one kind of (meta-)class of class is needed

class @AuthoredClass (@Class)
(author);

Tutorial.book : Chap5.frm 146 Sun Sep 8 16:44:46 1996

146 Open Implementations and Metaobject Protocols

Classes that were to retain author information would have an
@AuthoredClass metaobject representing them. Other classes without
author information would continue to be represented by objects of
@Class . That approach would provide the desired control over the scope
of the modification, and it would blend well with the programmer’s
understanding of the meta-interface being object-oriented.

The mechanism at the meta-level is clear now. The figure above still has the
arrow from the base level class definition to the Phone metaobject. How
would that arrow work?

Metaclass:subclassing

Meta-level Subclassing

class Phone (CommDev)
 (number)

author: “Fred”;

Internal class
creation

mechanics
The class metaobject for
Phone is made to be an

object of @AuthoredClass

 Phone
 “Fred”

 Senator

class @AuthoredClass (@Class)
 (author)

Tutorial.book : Chap5.frm 147 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 147

The programmer would define authored classes as shown here. Instead of
making his TinyObjects class be described by a regular @Class metaobject,
he would specify that he wants an @AuthoredClass kind of TinyObjects
class. In addition to the usual class name, list of superclasses and list of
slots, the programmer would provide a fourth argument to the creation of
such authored TinyObjects classes: the class creator’s name.

But there is a drawback to this solution: the base-level programmer can no
longer use the convenient class declaration for making classes, because
that primitive does not allow for the fourth argument. Being restricted to
explicit invocation is unpleasant. MOP designers need to update the user
interface syntax appropriately.

 Defining an Authored Class

To build a base level class Phone , authored by Fred:

new @AuthoredClass (“ Phone”,
 list(@findClass(“CommDev”)),
 list(),
 “Fred”)

Tutorial.book : Chap5.frm 148 Sun Sep 8 16:44:46 1996

148 Open Implementations and Metaobject Protocols

Here is a new syntax for the class statement which allows an additional
argument that determines the meta-class to be used in making the Tiny-
Objects class being defined. The figure shows the correspondences
between the explicit invocation way of creating a new class and the friend-
lier class interface to this operation.

Notice that the programmer does not quite get the syntax first proposed on
page 142. The author is not introduced by a keyword. Instead, a fourth
argument to the class primitive takes the non-standard class meta-class
to be used for making the new metaobject. The author information is then
provided in the initialization argument which is passed along to new.

The MOP designer is now almost ready to make the new piece of protocol
official. But there are still a few odds and ends to take care of.

How to Use the UI for Class Making

class Phone (...)
 (...)

@AuthoredClass(“Fred”);

new @AuthoredClass
 (“ Phone”,
 list(...),
 list(...),
 “Fred”)

Extra initialization for the new class

Specifying a meta-class other than @Class

Tutorial.book : Chap5.frm 149 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 149

Author information would be seeded by means of the above initializer. The
information provided in the initialization argument to the class primitive
would make its way to the new invocation that produces the class metaob-
ject. That instantiation process would run this initializer.

The only piece missing now is a way to access author information in class
metaobjects. Here is the code for that.

Initialization of Author Information

initializer @AuthoredClass (c,
 className,
 directSupers,
 directSlots,
 author) {

c.author = author;}

Tutorial.book : Chap5.frm 150 Sun Sep 8 16:44:46 1996

150 Open Implementations and Metaobject Protocols

A generic function, @classAuthor , would allow author information to be
retrieved via class metaobjects. As usual, a corresponding generic function
would be written for setting and changing the value.

One matter of safety must be considered in this context. Programmers will
get used to asking classes about their author. Sooner or later they will try to
obtain author information from class metaobjects that are not of the
@AuthoredClass lineage. Such a mistake should be handled gracefully,
or at least explicitly. The code shown here just returns an empty string. It
could instead raise an error condition.

Having ensured that the new meta-level capability of subclassing would
work for the programmer’s request, it needs to be documented as part of
the protocol.

<$endrange>Class:adding information to; <$endrange>Metaobject:adding information to

Access to Author Information

generic @classAuthor (class)

method @classAuthor (@AuthoredClass c) {
return c.author;}

And for safety:

method @classAuthor (@Class c) {
return “”;}

Tutorial.book : Chap5.frm 151 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 151

Here is a summary of what programmers can now do with the above new
piece of protocol: they can build new class meta-classes which add state to
the TinyObjects classes they produce. They can thus build new kinds of
TinyObjects classes. Since the mechanism uses inheritance, it is additive:
only the new piece of state is added. The remaining class creation mecha-
nism is unaffected. The use of inheritance further ensures that these exten-
sions affect only the classes of programmers that explicitly request them.

Question: Can programmers have authored kinds of classes inherit from default kinds of
classes? Or the other way around: can programmers write un-authored subclasses of
authored classes?

Answer: Yes. There is nothing that prevents programmers from doing this. And in this
case that is probably fine. It could make sense for an application to have CommDev classes
be authored, but not all the different specific devices below that class. Such a decision
would be up to the extension designer, that is the programmer who knows the applica-
tion. If they wanted to force inherited classes to be authored if the parent was authored,
they would need to wait till later when techniques will be introduced that allow program-
mers to change what happens when a class is initialized.

<$endrange>Class:customization; <$endrange>Examples:variables on classes; Metaclass:initializa-
tion; Metaclass:specialization; Metaclass:subclassing

Supporting Extension

• Programmers may define subclasses of @Class.

• The class definition primitive class supports an
option which selects the meta-class of the new class.

• class passes additional options as initargs to new.

Tutorial.book : Chap5.frm 152 Sun Sep 8 16:44:46 1996

152 Open Implementations and Metaobject Protocols

Notice that MOP designers have now taken a step qualitatively different
from the earlier steps in their protocol development. The first step pro-
vided representation of selected implementation state. The second pro-
vided functions within the framework of this representation for
programmers to call when they needed to trigger implementation opera-
tions that were previously hidden or only indirectly invoked. This third
step again works within the framework of the object-oriented meta-level
interface. This time the change is that programmers can add state to that
interface.

Intercession is the term for allowing programmers to “get into” substrate
operations in a controlled manner. Like introspection and explicit invoca-
tion, intercessory techniques solve a whole class of problems. The authored
class example was a first, ‘mild’ form of intercession which limits itself to
adding state, rather than modifying how the implementation does its job.

Intercession

The process of programmers adding state or modifying
operations of a substrate is called intercession .

Examples so far were limited to programmers adding
behavior or state.

Tutorial.book : Chap5.frm 153 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 153

The authored class example illustrates two advantages of the approach to
flexibility that is being developed in this book. This black box picture
shows the first of these advantages.

Note that the two kinds of TinyObjects classes, Senator and Phone are
peacefully living in one address space and can both be used in a single pro-
gram. They are interoperable. This is an important point in that it shows
how object-oriented technology is used here to insulate substrate exten-
sions from each other. This insulation addresses two fundamental prob-
lems with tailorability: (i) it allows the addition of features to the substrate
without requiring all programs to pay the additional cost, even if they do
not make use of those extensions. And (ii) it allows programmers to use in
one address space sets of components that are alike but have been
extended differently. The insulation of substrate extensions therefore keeps
use of the substrate manageable. Systems that are only globally tailorable,
are often very hard to use by multiple people, because interface customiza-
tions diverge. By allowing programmers to explicitly control the scope of
extensions, it is possible to customize substrates to suit different tasks, yet
still have the default configuration available.

Interoperability

class @authoredClass
 (@class)
 (author)

function @classAuthor...

Adding state and accessor

 Phone
 “Fred”

@Class

 @AuthoredClass

 Senator

class Senator (...) (...)

class Phone (CommDev)
 (number)

@authoredClass(“Fred”)

Tutorial.book : Chap5.frm 154 Sun Sep 8 16:44:46 1996

154 Open Implementations and Metaobject Protocols

This figure illustrates the second important point about this open imple-
mentations technology: once the meta-level extension has been completed,
all irrelevant portions of the substrate box can be “blacked out” again. The
details of the extension, like the subclass operation producing
@AuthoredClass , are irrelevant to the users of the Phone class and can
be hidden. The meta-level program has been removed in this figure to
illustrate that the programmer working at the base level can ignore it,
focusing instead on his problem, which is now easier to solve because the
extended substrate is better suited to support him.

This separation of concerns between the work on meta-level extensions and
base level goals is highly compatible with the notion of software libraries.
Library providers can write meta-level programs to implement the exten-
sions they wish to provide. The base level programmer can take advantage
of these extensions, without having to concern himself with the details of
their implementation. The abstraction layer black boxes are designed to
provide is therefore preserved, while the problem of their inflexibility is
nevertheless being addressed.

Separation of Concerns
class Senator (...) (...);

class Phone (CommDev)
 (number)

@AuthoredClass(“Fred”);

 Senator

Because meta-level
extensions are separate
operations, base-level
programs stay simple.

 Phone
 “Fred”

Tutorial.book : Chap5.frm 155 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 155

Exercise: In the case of authored classes, the author information is best kept with the class
metaobject because it is an attribute of the class. Sometimes, information should be kept
with a class because all objects of the class should have access to it, and when it is
updated, all objects should ‘see’ the new value. For that reason, some object systems pro-
vide a built-in class variable facility that can be used to implement features like class
author. Design a class variable extension to Tiny Objects. Use the MOP to implement that
in a new meta-class called @ClassVarsClass . Now reimplement the class author facility
using class variables. Did you define a new meta-class or a new base class to do this?

In addition to class variables, class properties are often a useful facility to have. They differ
from class variables in that they do not contain state. One occasion for their use would
have been the example on page 121 and page 122 where animal species were modeled
with properties such as furry and carnivorous. In this example, those properties were
implemented as slots. That is not a good solution because being properties, they do not
involve values requiring storage. Since furthermore they are properties at the species
level, their repetition in each (animal) object is unnecessary and consumes space each
time.

Write a program that implements animal properties at the species level. Begin by defining
a @ClassPropsClass as a subclass of @Class . Provide for the necessary storage to hold
properties, a way to initialize them, and the accessors for retrieving an animal’s proper-
ties.

Anything Else to Try?

Tutorial.book : Chap5.frm 156 Sun Sep 8 16:44:46 1996

156 Open Implementations and Metaobject Protocols

The problem is that object creation in TinyObjects is a much more rigid
operation than what is requested here. In the default system, programmers
have to specify exactly which class they want instantiated. What these pro-
grammers want is the ability to be a bit more declarative about their inten-
tion, and to have TinyObjects be more ‘creative’ in servicing programmer
requests.

The programmers again start by imagining an ideal object system for their
purposes. Here is a way this could look.

Examples:automatic subclass selection

Automatic Subclass Selection
We have different implementations of set functionality.
They are organized as multiple subclasses of a Set class.
For a given set, the optimal implementation to choose
depends on:

• How often elements will be accessed concurrently,

• How often elements will be added or removed and

• How big the set is likely to get.

We want programmers to obtain optimal impls of sets by
specifying these properties, rather than the subclasses.

Tutorial.book : Chap5.frm 157 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 157

When making a Set object, programmers would specify a usage profile
they expected the new set to be subject to. Somehow the operation behind
new would pick the correct subclass of Set to instantiate. The advantage to
programmers would be that they would not have to learn about the details
of Set ’s subclasses, and would instead declaratively provide the imple-
mentation with the necessary information.

Implementors of the set library would have an additional advantage. They
could add new, cleverly streamlined subclasses to Set . Client code would
start classes right away when appropriate, without the base level programs
having to be changed.

What Is Being Asked?
Programmers using the set functionality should be able to
write:

new Set (list (“high”, “low”, “large”));

 --> #<ReplicatedHashSet 1>

Concurrence Update frequency Size

Tutorial.book : Chap5.frm 158 Sun Sep 8 16:44:46 1996

158 Open Implementations and Metaobject Protocols

Both new and @new need to look at the initialization arguments passed to
them. From those arguments they must determine which subclass of Set

should be instantiated.

This is a new class of problem. This time, programmers want to ‘get in the
middle’ of a formerly atomic substrate operation to inject some additional
behavior. What they want is commonly called a ‘hook’. Hooks have a gen-
erally well-deserved bad name as non-modular, difficult-to-maintain pro-
gramming style. Let us see whether our MOP designers can find a way out
of this dilemma.

Analysis

• The subclass selection must happen after new is
called, but before any object is created.

• Programmers may call both new and @new.

Conceptually, the programmer wants to extend the
behavior of new and @new

Tutorial.book : Chap5.frm 159 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 159

Here is code that shows the way set functionality providers could go about
expressing what they want.

Programmers would have the ability to specify that their Set class was to
be a self-optimizing kind of a class. This would be done by specifying the
@SubcSelClass option in Set ’s class definition. This is the same syntac-
tic form that was used for authored classes on page 146. The @SubcSel-

Class would be a meta-class subclassed from @Class . It would have a
slot to hold a function pointer to a function that was responsible for com-
puting an appropriate subclass of Set when given a list of usage profile
properties. The @selectSetClass above is the stub of such a function.

This is at a syntactic level how programmers should be able to operate.
Next, the MOP designers need to examine how this functionality would fit
into the framework of the existing protocol and the model programmers
have in their minds of how the meta- level works.

An Interface to This Functionality

class @SubcSelClass (@Class)
(selectFunc);

class Set ()
()

@SubcSelClass(“@selectSetClass”);

class ReplicatedHashSet (Set)...);

function @selectSetClass(properties) {
case first(properties) == “high”

...}

Tutorial.book : Chap5.frm 160 Sun Sep 8 16:44:46 1996

160 Open Implementations and Metaobject Protocols

If, whenever an application used the new primitive to create an object, the
protocol promised that @new were called, then the protocol would ensure
the existence of a “choke point” through which all object creation had to
pass. If, furthermore, @new were a generic function, then programmers
could add behavior to the object creation process by adding methods to
@new.

Playing this out, it is clear what the @new method for the standard @Class

would do. It would allocate space for the object about to be created, and it
would call the initializers.

It is important to keep clear in one’s mind that methods on this proposed
@new would be for class metaobjects. They would not be base level meth-
ods. For example, programmers would not write an @new method on
Giraffe but on @findClass(“Giraffe”) .

Notice that this is more than what the protocol on page 117 provided,
where programmers were first allowed to call @new to trigger object cre-
ation. What goes beyond that specification is (i) that even the implementa-
tion is guaranteed to call @new when creating objects, and (ii) that
programmers can write methods on this generic choke point function.

Fitting It into the Meta-level Model

What if new worked by calling @new and @new was a
generic function?

method @new (@Class c, initargs) {
allocate the object
and call initializer
}

?

Tutorial.book : Chap5.frm 161 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 161

The programmer would add a method to extend what happens when
objects of optimizing classes are created. The method shown here first
retrieves the subclass-finding function from the class metaobject and runs
it, passing as an argument the properties specified in the new statement.
The code then calls @new recursively on the subclass computed by the sub-
class-finding function. That subclass would be a regular, non-optimizing
class.

Question: Couldn’t the programmers have written a createSet function that did the
subclass selection and then called @new?

Answer: Yes. This is a good example for judgment calls as they sometimes come up. Pro-
grammers using object creation routines as suggested in the question would dilute the
base interface. Their clients would have to remember that making set objects required a
different construct than regular object creation. Any other, similar extension would
require yet more special object creation routines whose names would have to be remem-
bered.

By putting effort into a meta-level adjustment once, the providers of Set s allow cleaner
programs in the context of the creation of Set objects, which is much more frequent than
that initial definition of Set .

Selecting the Subclasses

Now the MOP programmer could do this:

method @new (@SubcSelClass c, initargs) {
var subc = applyFn(c.selectFunc, initargs);
return @new(subc, list());}

Tutorial.book : Chap5.frm 162 Sun Sep 8 16:44:46 1996

162 Open Implementations and Metaobject Protocols

Having satisfied themselves that this piece of protocol would indeed help
programmers with their problem, the MOP designers can now go ahead
and extend the protocol.

The above protocol extension is the solution to automated subclass selec-
tion.

<$endrange>Examples:automatic subclass selection

Documenting This Protocol

@new is the generic function that is called to create new
objects of a class. It is called by new and any other code
that creates objects. It accepts a class metaobject and
initargs and returns an object. Programmers can add
methods to @new that are specialized to subclasses of
@Class .

Tutorial.book : Chap5.frm 163 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 163

Let us get our bearings again by looking at what this piece of protocol
means in terms of black-box abstraction.

In order to allow the creation of objects from programs, the @new function
was introduced in Chapter 4. It worked with classes, such as Set to create
objects with the correct number of slots.

Started with Reified Object Creation

new Set(...) --> #<set 1>

@new(@findClass(“Set”),...)

 Set

#<set 1>

@new

Tutorial.book : Chap5.frm 164 Sun Sep 8 16:44:46 1996

164 Open Implementations and Metaobject Protocols

The next step towards allowing the implementation of automated subclass
selection was to turn the @new function into a generic function. This in
itself changed nothing. All programs on top of the box still ran; so did any
meta programs written so far.

Turned @new into a GF
The 1st Step In Making Object Creation Customizable

@new(@findClass(“Set”),...)

 Set

@Class

#<set 1>

new Set(…) --> #<set 1>
The normal behavior of
@new is a method on
@Class

@new

Tutorial.book : Chap5.frm 165 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 165

Since the protocol already allowed subclassing of meta-classes, no other
extensions to the MOP were required, other than explicitly allowing meta-
interface users to add methods to @new.

Note that the ability to add an @new method now enables programmers
using the meta-interface to inject behavior into the black box. Before, they
were only able to inject state. Note as well that the use of object-oriented
technology again provided the means for controlling scope: only
TinyObjects classes explicitly declared to be implemented by @SubcSel-

Class will have their object creation mechanism modified by the injected
code. Such scope control is even more important for injected behavior than
for injected state, because behavior extensions have the potential for more
far-reaching consequences if their scope cannot be contained.

Once the correct protocol was in place, the implementation of optimizing
classes and a whole family of similar extensions was straightforward.

Localized Extension
New Behavior Applies Only to Optimizing Classes

class @SubcSelClass …;

method @new(@SubcSelClass...

…}

 Set

new set(...) --> #<set 1>

@Class

@SubcSelClass

@new

@new

#<set 1>

Tutorial.book : Chap5.frm 166 Sun Sep 8 16:44:46 1996

166 Open Implementations and Metaobject Protocols

Here is all the code programmers wrote on the meta-interface to imple-
ment the optimizing subclass selection extension.

Review of This Extension (1/2)

class @SubcSelClass (@Class)
(selectFunc);

method @new (@SubcSelClass c, initargs) {
var subc = applyFn(c.selectFunc, initargs);
return @new(subc, list());}

function @selectSetClass(properties)
case first(properties) == “high”

...}

Tutorial.book : Chap5.frm 167 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 167

And here is what base-object system programmers can now do.

Exercise: This is not bad. But notice that whenever a new subclass of Set is created to pro-
vide an additional specialized implementation, the subclass-finding function @select-
SetClass must be modified to check whether the given properties warrant this new class
to be selected as the subclass of choice.

Rework this example so that every subclass of Set holds its own function for evaluating a
usage profile. Each of these functions determines how appropriate its subclass would be
as the implementation of choice under the given usage profile. The functions return a bid
indicating how well their subclass could do. The @new method finds each of Set ’s sub-
classes, obtains its evaluation function and calls it. Finally, @new instantiates the subclass
who’s evaluation function returned the winning bid.

Review of This Extension (2/2)

class Set ()
 (items)

@SubcSelClass();

new Set (list (“high”, “low”, “large”));

 --> #<ReplicatedHashSet 1>

Concurrency Update frequency Size

Tutorial.book : Chap5.frm 168 Sun Sep 8 16:44:46 1996

168 Open Implementations and Metaobject Protocols

Now that we have gone through the base/meta design model a few times,
we can visualize it. When base programmers run into a problem they can-
not cleanly solve within the base object system, they work out the object
system constructs that would best fill their needs, writing the code as if
these constructs were already available. They then analyze what would be
required of the substrate implementation to provide the constructs. To
implement their extension, they turn to the MOP that comes with the sub-
strate. Writing meta programs, they create the best object system for their
purposes, test the result and continue their work.

Hopefully, the MOP is powerful enough to enable the necessary substrate
adjustments. But if it is not, programmers need to turn to the MOP
designer for help.

<$startrange>Design cycle

Programmer’s Work Cycle

1. Dream: Write code in “ideal”
base object system.

2. How is that object system
different?

3. Implement new base object
system with the MOP.

4. Test.

Implement

Dream

Analyze Test

Tutorial.book : Chap5.frm 169 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 169

Here is the whole picture. Programmers select or construct substrate con-
figurations that best suit their needs. If they cannot implement a new con-
figuration they need by using the existing MOP, their problem becomes the
subject of the MOP designers’ concern. The application programmers’
meta-interface programming needs thus drive MOP development.

MOP designers follow a cycle similar to that of programmers. When pro-
grammers come to them with shortcomings of the existing MOP, they
begin by imagining the protocol that would most easily allow the pro-
grammers to write the meta programs they need. They then consider
implementations of the substrate and analyze which structures or behav-
iors need to be reified and documented. The protocol ‘implementation’
consists of a thorough documentation, and the proof that efficient substrate
implementations are possible. Testing of the protocol can involve the meta
program needed by the programmer whose request initiated the MOP
extension.

Eventually, the MOP will stabilize and programmers will be able to per-
form most of the substrate adjustments that are reasonable.

<$endrange>Design cycle

MOP Design

Implement

Dream

Analyze Test

Implement

Dream

AnalyzeTest

Meta code

Base code

Tutorial.book : Chap5.frm 170 Sun Sep 8 16:44:46 1996

170 Open Implementations and Metaobject Protocols

Here is another graphical view of our progression so far. Note that we have
slowly moved along a spectrum of involvement with the object system. Ini-
tially, the substrate was a black box. Introspection added selected, and
properly prepared transparent spots to the black box, corresponding to
abstracted implementation state.

Explicit invocation allowed programmers to invoke substrate operations
directly. Intercession enabled them to inject additional state and behavior
into the box.

Adding author information to the metaobjects describing classes was an
example of injected state. Causing @new to select a subclass before pro-
ceeding in the usual way was an example of behavior injected into the sub-
strate to augment what the substrate was already doing.

<$startrange>Examples:changing inheritance model

MOP Designer’s Review to Date
A Graduated Process of Opening the Implementation

Object System Is a Black Box

Read Information

Add State

Add Behavior

Introspection

Intercession

Call Substrate OperationsExplicit Invocation

Tutorial.book : Chap5.frm 171 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 171

What we have implied as well throughout is that when programmers work
on the meta-interface, their behavior must be moderated by “rules of
behavior,” as is customary for software engineering in general.

Rules Mediate

Rules of
Behavior

MOP Programmer Implementor

Protocols

Tutorial.book : Chap5.frm 172 Sun Sep 8 16:44:46 1996

172 Open Implementations and Metaobject Protocols

In particular, we have seen in an earlier copy of this figure that even simple
introspective protocols come with such rules. They ensure that implemen-
tors retain the freedom they need to produce efficient code. Now we can
begin to see that these rules are part of a pattern. These were the ones for
introspection. Let us look at what kind of restraints the additional power of
intercession requires.

Rules for Introspection

These rules ensure integrity of data structures and
implementor freedom:

• No assumptions about ordering in sets (for example,
@classDirectSubs)

• Do not modify lists or sets

• Successive reader results may or may not be identical

• Lists and sets may change if program changes (load-
ing/reloading)

Tutorial.book : Chap5.frm 173 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 173

Designing these rules is again just software engineering. The thought pro-
cess that goes into them is the same as for making other systems robust.
The capabilities available to programmers through intercession potentially
harbor the dangers of private implementation information being accessed
and system behavior being altered inappropriately.

Rules for Intercession (1/2)

Examples of what such rules must guard against:
• Slots that are private to the implementation being read/

set by programmers

• Implementation methods being altered or prevented
from running

Tutorial.book : Chap5.frm 174 Sun Sep 8 16:44:46 1996

174 Open Implementations and Metaobject Protocols

To guard against these, MOP designers need to document these rules for
the use of intercessory capabilities: programmers must not define slots in
subclasses of system classes that already exist, and they must ensure that
system methods will run, unless the MOP explicitly specifies otherwise.

Note that many of these rules are checkable. There are other, more subtle
ones that apply to substrate implementors. They are covered in [Kiczales
and Lamping 92].

Rules for Intercession (2/2)

• Specialization must not interfere with existing slots

• System methods must not be overridden

Tutorial.book : Chap5.frm 175 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 175

<$startrange>Class precedence list

This example was actually an important part of the CLOS design. Flavors
was a language that preceded CLOS, which is a language that preceded
Dylan. Both Flavors and CLOS have multiple inheritance object models.
Loops and Commonloops were in the family of multiple inheritance mod-
els as well. While some people love multiple inheritance and some people
hate it, everyone agrees that we do not quite understand it. In particular,
there is a question on how to resolve conflicts that can arise when inherit-
ing from more than one superclass. These conflicts, for instance, require
decisions on which slot should “win” when multiple slots with the same
name but different properties are inherited, or on the order in which meth-
ods will be executed when several are applicable.

Object model designers cannot quite agree on whether and how to map
multiple superclasses into linear CPLs as TinyObjects does. Flavors did it
one way, CommonLoops another. Then several smart object model theore-
ticians sent megabytes of electronic mail back and forth with carefully rea-
soned arguments as to why there was a better way. CLOS ended up with
yet a third solution, different from both Flavors and Commonloops. C++
expects programmers to manually resolve the conflicts, which is yet
another approach.

Changing the Inheritance Model
Dusty Decks

I have all this Flavors code and want to switch to
TinyObjects. A crucial incompatibility between the
respective object models lies in the inheritance rules. Can
I fix TinyObjects to execute Flavors programs?

Tutorial.book : Chap5.frm 176 Sun Sep 8 16:44:46 1996

176 Open Implementations and Metaobject Protocols

TinyObjects has multiple inheritance as well—different from Flavors. To
exemplify this, consider the little example class graph above. A inherits
from B and C, etc. TinyObjects and Flavors linearize this inheritance lattice
slightly differently, as shown. The details do not matter. The point is, the
linearization is different.

Differences in Inheritance Models
It’s all in the ordering:
class X () ();
class Y () ();
class D () ();
class E () ();
class B (E X) ();
class C (E Y) ();
class A (B C D E) ();

Different CPLs:

TinyObjects: (A B C D E Y X …)

Flavors: (A B C D E X Y …)

 D E X Y

 B
C

 A

Tutorial.book : Chap5.frm 177 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 177

Here is a program that specializes on the classes X and Y. If the test

method is run with an A object in both Flavors and TinyObjects,
TinyObjects runs the Y method, while Flavors runs the X method.

If the programmer needs to use a large legacy system written in Flavors
and wants to add a few classes written in TinyObjects, he has a backward
compatibility problem. What can the programmer do to make his pro-
grams work with the Flavors legacy code?

The first point to note is that the class precedence list is the key to inherit-
ance. This was made clear on (page deleted) and through the subsequent
examples there: when method dispatch is computed to execute a call to a
generic function, the CPL of the class of the first argument is the determin-
ing factor for deciding which methods to run and in which order.

How could this insight help understand what this programmer needs?

Impact of Inheritance Model
Conceptually, the CPL Encodes Inheritance Behavior

generic test (foo);

method test (X foo) do the X thing;
method test (Y foo) do the Y thing;
var obj = new A()

test(obj)

 Dispatch behavior is based on the CPL

TinyObjects does the Y thing

Flavors does the X thing

Tutorial.book : Chap5.frm 178 Sun Sep 8 16:44:46 1996

178 Open Implementations and Metaobject Protocols

The programmer would like to say “most of my classes have TinyObjects
inheritance, but some of them are Flavors classes, and they should have
this other—Flavors—inheritance behavior.”

Since inheritance hinges on CPLs, per class control over inheritance behav-
ior translates to per class control over CPLs.

What the programmer is asking for here is an ability to introduce very
deep deviations in object system behavior, yet to retain modularity within
his programs. The facilities that will be shown through the following pages
are actual CLOS features. Thanks to them, CLOS did not need a special
option in the language to switch between Flavors and CLOS inheritance
semantics. Instead, programmers are empowered to shape the object
model in a controlled manner.

For now, however, the TinyObjects programmer does not yet have such
lofty facilities. Here is the MOP designer going to work again.

<$startrange>Class:initialization

Inheritance Behavior Control
Declaring Inheritance Behavior on a Per Class Basis

class SomeOldClass () () @FlavorsClass();

class AnotherOldClass (SomeOldClass)
 (...)

@FlavorsClass();

Inheritance of these classes should work the Flavors way

Conceptually: a differently constructed CPL
for some classes—by programmer choice

Tutorial.book : Chap5.frm 179 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 179

As usual, the MOP designer needs to think first about the prototypical
implementation. Conceptually, CPLs are part of the information all imple-
mentations of TinyObjects somehow need to maintain about each class.
The introspective protocol of Chapter 3 guaranteed that @classCpl

would return a given class’ CPL. But it gave the programmer no control of
CPL construction. If the MOP designer could find a way to extend the pro-
tocol so that the programmer could participate in the initial computation of
each CPL, she would be close to a solution.

The question is, where does the CPL come from?

<$endrange>Class:initialization

Where is the CPL?

• The CPL is part of the information about a class

• What if the programmer could control the CPL?

name: A
direct-supers: (…))
direct-slots: (…)
cpl: (#A #B #C #D

 #E #Y #X)
slots: (…)
direct-subs: (…)
direct-methods: (…)
initializer: #code

 Class A

Tutorial.book : Chap5.frm 180 Sun Sep 8 16:44:46 1996

180 Open Implementations and Metaobject Protocols

Clearly, the CPL information must be constructed during class initializa-
tion. Remember that at the outset of this process, the only information
available is what comes from the class definition directly. Somehow, the
entire class definition is constructed from that information.

Remember Class Creation (1/2)

 class A (B, C, D, E)
 ();

name: A
direct-supers: (#B #C #D #E)
direct-slots: ()

Class A

Tutorial.book : Chap5.frm 181 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 181

In particular, the class precedence list and the slots are computed from this
initial information. Somewhere in the class initialization machinery, there-
fore, is a place where the CPL is computed. To find out where this happens,
the MOP designer looks at class creation in more detail.

Remember Class Creation (2/2)

Class precedence list (CPL)
and complete set of slots
are computed and stored

name: A
direct-supers: (#B #C #D #E)
direct-slots: (state)
cpl: (#A #B #C #D

 #E #Y #X)
slots: ()

Class A

 D E X Y

 B
C

 A

Tutorial.book : Chap5.frm 182 Sun Sep 8 16:44:46 1996

182 Open Implementations and Metaobject Protocols

These are the inherent dynamics of class creation. It is already clear that
there is a call to new to create a class metaobject (page 126). And it is
known that new calls @new (page 162). Somewhere inside, the system will
have to run the initializer of the class. And this is where the CPL will be
constructed because that is where the class description metaobject is built.

Here is a look at what inherently happens when a class is initialized.

Looking for CPL Construction Site

class A (B, C, D, E) ();

 new @Class(...)

 @new(@findClass(“@Class”),...)

 run the initializer for @Class

 ???

...

...

...

...

Tutorial.book : Chap5.frm 183 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 183

The three main pieces of work done during class initialization are (i) the
storage of properties that are specified by the programmer in his class dec-
laration, (ii) the maintenance of backlinks, and (iii) the computations of
class properties that are derived from the ones that are directly specified.

The latter point is were the MOP designer strikes gold: one of the derived
properties is the class’ CPL. Finally, she has found the choke point a proto-
col extension might use to allow the programmer into the CPL construc-
tion process.

<$endrange>Examples:changing inheritance model

Details of Class Initialization

initializer @Class(c,
 name,
 directSupers
 directSlots){

c.name = name;
c.directSupers = directSupers;
c.directSlots = directSlots;

updateDirectSupers(directSupers, c);

c.cpl = @computeCpl (c);
c.slots = @computeSlots(c);}

direct
properties

backlinks

derived
properties

Tutorial.book : Chap5.frm 184 Sun Sep 8 16:44:46 1996

184 Open Implementations and Metaobject Protocols

Graphically, the whole initialization process looks like this. Everything
above the solid horizontal line on the right of the figure above has already
been specified in the MOP developed so far. It is known that the class

declaration invokes new, which calls @new. Now, the MOP designer will
pull the line that divides the documented from the undocumented part of
the class initialization process down along the dotted path.

This means that implementations will now have to compute the CPL by
calling @computeCPL after they have stored the direct superclasses, so
that @computeCpl has access to them.

Graphical View of Class Creation
Call/Return

Generic Function

@new

@allocate

@computeCpl @computeSlots

new

class

store direct values

backlinks

initializer

Tutorial.book : Chap5.frm 185 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 185

If, furthermore, @computeCpl were a generic function, the programer
could add methods that performed the CPL computation appropriate for
his purposes. In particular, he could add a method that sorted superclasses
the Flavors way.

This thought experiment shows that a MOP extension along these lines
would solve the programmer’s problem and, most likely, a whole class of
other inheritance-related issues as well. Here is the documentation to make
the new piece of protocol official.

Programmer Control over the CPL

If @computeCpl were a generic function, programmers
could do this:

method @computeCpl (@FlavorsClass c){
 Sort supers the Flavors way}

Tutorial.book : Chap5.frm 186 Sun Sep 8 16:44:46 1996

186 Open Implementations and Metaobject Protocols

The only way any implementation is allowed to compute the CPL from
now on is by calling @computeCpl . This means that every class can com-
pute the CPL its own way. The protocol further specifies that the CPL will
then be available through calls to @classCpl .

<$startrange>Class precedence list:participation in construction of

Access to CPL Computation (1/2)

• @computeCpl is the generic function that is called by
all TinyObjects implementations to compute class pre-
cedence lists. It takes a class metaobject and is called
during class initialization, after the direct superclasses
have been stored.

• The CPL returned can be retrieved with @classCpl.

• Implementations will use this CPL as the basis for all
inheritance-related computations, such as method dis-
patch.

Tutorial.book : Chap5.frm 187 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 187

The protocol also explicitly allows the programmer to add methods to
@computeCpl . But it would be wrong to allow him to return just any list
of superclasses as his CPL. This is because there are many decisions in the
design of TinyObjects that depend on certain assumptions of how the
inheritance will work. For example, systems should be able to rely on
every CPL being arranged such that subclasses come before superclasses
and that @computeCpl is a function of the class graph and the precedence
relations only. This restriction is necessary to ensure that inheritance
behavior is not arbitrary and can be predicted from those properties of pro-
grams that are relevant to inheritance.1

<$endrange>Class precedence list:participation in construction of

1. It will be shown later that this restriction has the additional purpose of ensuring that
@computeCpl can be called at compile time to ensure that TinyObjects operations
such as method dispatch can be optimized.

Access to CPL Computation (2/2)

The programmer can define methods on @computeCpl
that override the system method, but the CPL returned by
those methods must:

• Include each and every ancestor once and only once

• Start with the class and end with Object

• Respect direct precedence relations

• Be a function of the class graph only

Tutorial.book : Chap5.frm 188 Sun Sep 8 16:44:46 1996

188 Open Implementations and Metaobject Protocols

This new protocol is quite simple to implement and easy to use. The imple-
mentors simply need to make @computeCpl generic, providing a method
specialized to @Class which performs the default TinyObjects CPL opera-
tions.

The lower half of the figure summarizes again how the programmer in this
example could make use of this new piece of protocol. It is an example that
initially appears too deep to tackle successfully, but proves to be quite rea-
sonable and useful.

<$endrange>Class precedence list

How It All Works

The implementors do:
generic @computeCpl (c);

method @computeCpl (@Class c) {
Sort supers the TinyObjects way}

And ensure that @computeCpl is called.

The MOP programmer can then write:
method @computeCpl (@FlavorsClass c){

Sort supers the Flavors way}

Tutorial.book : Chap5.frm 189 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 189

While the programmer and MOP designer should challenge implementors
who object to requests merely on the basis of tradition, the MOP designer
in particular must provide good answers to valid implementor concerns:
will the programmer build crazy concoctions and then complain? Will the
implementation be too fragile? Will the implementation be slow?

In that spirit, it is time to return to the checklist above. The Flavors legacy
system is one example of what control over CPL construction is good for.
Another application might use @computeCpl to add required super-
classes into the CPL. This would be in a situation where every class in
some application framework was required to inherit from those super-
classes, but the framework provider wanted to save the programmer from
having to specify those superclasses whenever he used the framework.

But what about coherence? Does programmer control over CPL computa-
tion jeopardize system usability?

Central Questions to Address
Standards New Capabilities Must Meet

• Usefulness

What is the new capability good for?
Does it leave programmers with a coherent system?

• Feasibility of implementation

Can implementation be made robust?
Can it be efficient?

Tutorial.book : Chap5.frm 190 Sun Sep 8 16:44:46 1996

190 Open Implementations and Metaobject Protocols

In order to evaluate threats to coherence when CPL computations are
made accessible, the MOP designer essentially said: class precedence lists
must be sorted lists of ancestors, and they have to respect direct prece-
dence relations. TinyObjects simply is the kind of object model for which
this is true. The protocol provides the programmer with some leeway
within these boundaries, but the basic nature of the model must be safe-
guarded.

Note that adherence to this requirement is checkable. The initialization
process will call @computeCpl , and it can inspect its answer to ensure that
the function respected these rules.

Since the CPL computation is a function of the class graph, the CPL cannot
change over time. This is a further level of confinement that other pro-
grams and the object system implementations can rely on.

Coherence:intercession of; Intercession:coherence in

Coherence

Must ensure that the programmer cannot hurt himself too
badly and that he cannot hurt others:

• CPL invariants to maintain reasonable inheritance
rules.

• Programmer “confined” to the @computeCpl GF; can-
not randomly change the CPL anytime.

Tutorial.book : Chap5.frm 191 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 191

The reason robustness can be maintained in this example is, again, that the
CPL is checkable right after it is computed. This ensures that implementa-
tions will not be tripped up later on. The rule about the CPL being required
to remain static afterwards ensures that implementations can continue to
make correctness assumptions about the CPLs in the system from then on.

Intercession:robustness in; Robustness:intercession of

Robustness

Must ensure that system data structures will not change
unpredictably or otherwise be damaged:

• The programmer cannot modify the CPL once it is com-
puted

• The computed CPL must exhibit specific properties
which are checkable after the call to @computeCpl

Tutorial.book : Chap5.frm 192 Sun Sep 8 16:44:46 1996

192 Open Implementations and Metaobject Protocols

The performance question involves an examination of whether the default
object system implementations and their extensions can be fast. This will
come up in Chapter 7 and will therefore not be discussed in great detail
here.

An important point, however, is that since the CPL must be a function of
the class graph only and cannot change over time, implementations are
free to cache the CPL and all computations dependent on it after its initial
construction. The protocol has therefore carefully preserved exactly the
freedom implementations need to optimize its post class definition run-
time.

Performance

Must ensure that implementation can employ caching and
other optimization techniques, in spite of programmer
involvement:

CPL computations are O.K. because:
• New CPL comes in at a well-defined point before any

objects are created. System calls @computeCpl and
installs the result.

• Programmer cannot otherwise modify a class’s CPL

 This will continue to be important later.

Tutorial.book : Chap5.frm 193 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 193

Note that all these points about coherence, robustness and performance are
generally applicable issues around good design. They are as important to
consider in application programs or traditional systems programs as they
are in the context of metaobject protocols.

Just Good Software Engineering

These rules and protocol design esthetics are nothing
fancy. They come from adopting our basic stance and then
just doing elegant modular design.

Tutorial.book : Chap5.frm 194 Sun Sep 8 16:44:46 1996

194 Open Implementations and Metaobject Protocols

The motivation behind the extra effort required for the design of MOPs is
the stance seen earlier: if provided with principled substrate access that
does not jeopardize coherence, robustness and performance, the program-
mer can solve many problems easily and cleanly, which he would other-
wise have to “hack together.”

The Stance

Be open-minded towards meeting programmer needs by
giving him principled effective access to the object system
implementation, with the thought that if this is done, he will
be able to solve many of his problems himself.

Tutorial.book : Chap5.frm 195 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 195

Here is an example of what happens when a protocol is not carefully
designed. This proposal is superficially similar to the protocol developed
earlier. After all, it provides the programmer with control over the CPL
which in turn drives inheritance behavior. But it causes ill-defined behav-
ior in many cases, can break important object model properties and pre-
sents tremendous implementation problems.

This bad example illustrates that coherence, robustness and implementa-
tion feasibility require careful protocol design which provides levers, not
crowbars.

<$startrange>Coherence:violation, example

Here’s a Punch in the Nose

PROPOSAL: Document a @setCpl function which
programs can call at any time with any list of classes.

BUT:
• What if the CPL is changed in the middle of method

execution and callNextMethod breaks as a result?

• What if the CPL is changed to not include Object ?
Anyone relying on methods on Object being applica-
ble to all objects will be in trouble.

• Performance!

Tutorial.book : Chap5.frm 196 Sun Sep 8 16:44:46 1996

196 Open Implementations and Metaobject Protocols

This MOP design would be even worse: it would allow the programmer to
modify the CPL at random times without even calling @setCpl to let the
system know. Unpredictable programs would undoubtedly result sooner
or later.

<$endrange>Coherence:violation, example

Here’s a Knockout Punch

PROPOSAL: Allow the program to hold on to the CPL
returned by their method on @computeCpl , and to
randomly mutate it anytime.

Tutorial.book : Chap5.frm 197 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 197

At the starting point of this tutorial, TinyObjects was a black box substrate.
It was useful, but often inadequate for a particular programmer. The terms
introspection, explicit invocation and intercession were introduced over the
previous chapters to describe three kinds of capabilities the programmer
often misses when dealing with black box substrates.

Introspection allows the programmer to look into parts of the substrate,
through an appropriate abstraction layer. Explicit invocation makes avail-
able selected functionality that was previously hidden. Intercession, finally,
lets the programmer add to the substrate, and make modifications. All
within boundaries defined by protocols.

Those capabilities are presented to the programmer through an object-ori-
ented meta interface constructed from metaobjects. Each successive capa-
bility is achieved through a progressive enrichment of that interface.

Review: The Terrain Covered So Far

Object System is a Black Box

Read Information

Add State

Add Behavior

Introspection

Intercession

Call Substrate OperationsExplicit Invocation

Modify Behavior

Tutorial.book : Chap5.frm 198 Sun Sep 8 16:44:46 1996

198 Open Implementations and Metaobject Protocols

Here is a more detailed view of the meta-level capabilities so far. When
reading this table from top to bottom, the protocol becomes more and more
rich, a deeper and deeper cut into the object system substrate, and the
MOP programmer can achieve more and more powerful work with the
object system. To enable introspection, as needed for the construction of
specialized browsers or analysis tools, the metaobject protocol exposed
metaobjects and readers for them. This was a reification of information
maintained by all implementations.

The implementation of custom interfaces to the base object system, such as
alternative ways of creating objects and classes, required the ability to
effect corresponding actions in the substrate, without using standard syn-
tax which is sometimes too restrictive. This requirement was met by reify-
ing behavior, that is by making some operations on metaobjects available
to the programmer.

Finally, intercession worked by allowing the programmer to subclass
metaobject classes and to write methods on specific “choke point” generic
functions.

Review: How and Why

Protocol Exposes Capabilities Concept

Metaobjects and readers Specialized
browsers, analysis

Introspection

Meta-level operators that
implement obj system ops

Custom interfaces
to base obj system

Explicit
invocation

MO classes subclassable:
to: add slots

add methods

Add information to
program rep.
Add behavior to the
object system

Intercession

Tutorial.book : Chap5.frm 199 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 199

It is important to keep in mind throughout that MOPs do not expose the
entire implementation, but very specific parts of it. The substrate designer
only needs to go as far as her clients require. If only introspection is
needed, only an introspective protocol needs to be provided. The MOP
designer could stop right there.

Access to the substrate implementations can be graduated, matching pro-
grammer needs. This is very different from letting the programmer ran-
domly change the implementation, as happens when large numbers of
more or less random “hooks” directly into the implementation are pro-
vided.

<$startrange>Design cycle

The Design Process
It’s Not All or Nothing

• The implementation is not completely opened up

• Access may be provided to varying depths, providing
correspondingly increasing power

• Depth of access is matched to programmer needs

• Access is organized through well-documented proto-
cols, not random user hacking of internals

Tutorial.book : Chap5.frm 200 Sun Sep 8 16:44:46 1996

200 Open Implementations and Metaobject Protocols

Well? Can you think of times when you wished in retrospect that you had
been more assertive with your substrate provider and would now like to
try your hand at introducing a protocol that afforded tailorability you
needed?

<$endrange>Design cycle

Anything Else to Try?

Tutorial.book : Chap5.frm 201 Sun Sep 8 16:44:46 1996

But I Wish It Had This Extra Feature… 201

Summary
Introspection —examination of selected system

internals.
Explicit Invocation —enabling programs to explicitly
invoke substrate operations, bypassing syntax in some
cases.
Intercession —metalevel specialization that adds to or
modifies existing features of the base object system:

Adding State
Adding Behavior
Modifying Behavior
Adjusting Performance

Tutorial.book : Chap5.frm 202 Sun Sep 8 16:44:46 1996

202 Open Implementations and Metaobject Protocols

Tutorial.book : Chap6.frm 203 Sun Sep 8 16:44:46 1996

Chapter 6 But I Could Make It
Run Better for My
Application…

Tutorial.book : Chap6.frm 204 Sun Sep 8 16:44:46 1996

204 Open Implementations and Metaobject Protocols

So far, all examples have used metaobject protocols to add features or
adjust behavior. There are other reasons why the programmer might want
to use MOPs. Often particular applications have characteristics that would
allow significant optimizations in the substrate they build on, if only there
was a way to adjust the substrate to take advantage of those peculiarities
while serving that one application.

Here is an example involving savings in disk access time and memory
space. This programmer would like “lazy slot caching” for his objects. He
begins by extending the base object system syntax on paper to work out
what he wants.

Intercession in Slot Access

The objects in my program have images associated with
them. My problem is that the images take up a lot of room
in virtual memory. I would rather not read them in until I
know I actually need them.

Tutorial.book : Chap6.frm 205 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 205

The Truck class defined here has three slots—front , side , and weight .
The declaration following the list of slots would identify the class as one
that is able to defer slot initialization, that is, as a lazy class. Recall that this
class definition syntax came up before on page 148. The @LazyInitClass

field after the slot list is a specification of which class meta-class Truck is
to be made from. The list following it are initialization arguments used in
the class initialization process. In this case, that is a list of lazy slots.

In analyzing what he needs to do to obtain this facility, the programmer
comes to the following conclusion...

The Programmer Would Like to Write

class Truck ()
 (weight)

@LazyInitClass(“front”, “side”);

trl = new Truck(60000);

trl.side -->

This slot access should load the image,
and save it away in the slot.

Tutorial.book : Chap6.frm 206 Sun Sep 8 16:44:46 1996

206 Open Implementations and Metaobject Protocols

The first of these is straightforward. He needs to keep a piece of informa-
tion with a class metaobject. Intercession allows him to do this. So the cur-
rent MOP is powerful enough to meet the first requirement. But for the
second, the programer needs to modify what happens when slots are
accessed. The MOP developed so far is insufficient for this.

To clarify these two goals further, he thinks a bit more in terms of what—
qualitatively—he needs to accomplish in the object system machinery.

How to Make This Work?

The programmer needs to do two things:

1. Classes must have information on which slots have
lazy initializations—this is simple intercession.

2. The behavior of slot access must be augmented—more
MOP will be needed to do this.

Tutorial.book : Chap6.frm 207 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 207

On the left of this figure is a visualization of the information maintained
about the Truck class. In addition to the class name and the other class-
related information, there is the new information about which slots are
lazy, and where their contents are stored. On the right are two snapshots of
one Truck object: one taken before execution of the tr1.side operation,
one after. In the before picture, the second slot (side) is not filled in. But
after the operation, in the lower snapshot, the image has been loaded. This
loading operation is what the second problem in the previous figure is
about.

Extra slotRef Behavior
tr1.side

#<Truck 1>

 #<Truck 1>
The lazy slot information needs to
be stored in the class, where the
customized slot access can check it.

name:Truck

lazyInitSlots:((front "...")
 (side "..."))

 Class Truck
null

null

60000

null

#image

60000

...

Tutorial.book : Chap6.frm 208 Sun Sep 8 16:44:46 1996

208 Open Implementations and Metaobject Protocols

Here is the easy part. This code adds the lazy slot information to class
metaobjects. It is by now idiomatic for the programmer versed in the meta
interface.

Extra Information in the Class

class @LazyInitClass (@Class)
 (lazyInitSlots);

initializer @LazyInitClass (c,
 className,
 directSupers,
 directSlots,
 lazyInitSlots) {

c.lazyInitSlots = lazyInitSlots;}

Tutorial.book : Chap6.frm 209 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 209

The obvious place to intercede with slot access is the function which is
responsible for handling operations like tr1.side . The problem is that
this operation is not reified. So the programmer cannot cleanly provide any
facilities that add or change functionality around slot access.

The MOP designer did not anticipate this class of programmer needs, and
since it is likely that there are other examples like the lazy slots which
require principled ways for working with slot access, it makes sense for her
to extend the metaobject protocol.

Changing Slot Access

The programmer wants to augment slot access behavior,
but the mechanism behind expressions like
obj.slotName is not reified.

More protocol is needed, in particular, some way of
controlling slot access.

Tutorial.book : Chap6.frm 210 Sun Sep 8 16:44:46 1996

210 Open Implementations and Metaobject Protocols

To do this, the MOP designer again looks at the basic events around slot
access that are true for all implementations alike.

Somehow, a piece of code or collection of functions in every implementa-
tion uses information from the class metaobject to extract the desired infor-
mation from the object. This code is indicated by the white cloud in the
black box.

Recall that the MOP designer was confronted with a similar situation on
page 204, when the programmer requested ways to create objects from
classes known only at runtime. The same technique for MOP development
that was used then will work here...

Slot Access Operation Not Reified

tr1.side -->

 Truck

#<Truck 1>

Some amorphous internal
code reads the class
description and retrieves
the slot value from the
object.

Tutorial.book : Chap6.frm 211 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 211

The MOP designer gives a name to the slot access operation, reifying it, so
that it can be made accessible from the outside. One possibility would then
be for the resulting entity to be made a function for the programmer to call.
As was true with @new, this would not be acceptable, because it would not
afford control over the scope of programmers’ extensions: if the program-
mer changed @slotRef , then all TinyObjects programs would be forced to
use that new version.

Reifying Slot Access

@slotRef(@classOf(tr1),
 tr1,
 “side”)

A new meta-level function
on class metaobjects
extracts slot values from
their objects

 Truck

#<Truck 1>

tr1.side -->

@slotRef

Tutorial.book : Chap6.frm 212 Sun Sep 8 16:44:46 1996

212 Open Implementations and Metaobject Protocols

And so the final solution is to make @slotRef generic. The code which
provides slot access for programs using the default TinyObjects is simply
the @slotRef method on @Class ...

Making @slotRef Extensible (1/2)

@slotRef(@classOf(tr1),
 tr1,
 “side”)

tr1.side -->

@Class
@slotRef

 Truck

#<Truck 1>

Tutorial.book : Chap6.frm 213 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 213

...to which the programmer adds his own methods, specialized to sub-
classes of @Class .

This will work for the programmer. But before plunging ahead, some more
checking is needed.

Making @slotRef Extensible (2/2)

class @LazyInitClass ...;

method @slotRef(@LazyInit...
 obj
 slotName) {
 ...}

 Truck

#<Truck 1>

tr1.side -->

@Class

@LazyInitClass
@slotRef

@slotRef

Tutorial.book : Chap6.frm 214 Sun Sep 8 16:44:46 1996

214 Open Implementations and Metaobject Protocols

Before really documenting the new proposed piece of protocol, the MOP
designer needs to examine whether it can be implemented in such a way
that old code will not break, and whether code taking advantage of the
new protocol is interoperable with code using the default protocol: can they
exist in the same address space, and can they interact with each other?

Here is the result of this analysis. At least conceptually, under the new pro-
tocol implementations could compile any obj.slotName operation into a
call to @slotRef . As mentioned, an @slotRef method on @Class could
contain the current (default) slot access code.

Furthermore, before adopting this piece of protocol, the MOP designer
needs to perform a deeper analysis yet to ensure that efficient implementa-
tions are possible and that the protocol does not prevent use of implemen-
tation optimizations. Chapter 7 will introduce this type of analysis.

Implementing This New Protocol

obj.slotName
compiles to: @slotRef(@classOf(obj),

 obj,
 “slotName”)

method @slotRef (@Class c, obj, slotName) {
whatever the original definition of slot access did}

More about this shortly

Tutorial.book : Chap6.frm 215 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 215

Having satisfied herself that the new piece of protocol will (i) solve an
important class of problems for this and other programmers, and that (ii)
implementors will not be unduly constrained, the MOP designer can
finally publish the extension to the MOP.

Question: Couldn’t there instead just be a generic function that takes an object and a slot
name? It wouldn’t be meta any more, but it would have the same functionality.

Answer: Yes, that would be similar, but not the same. There are two reasons to do it the
way presented here. The first is that conceptually, slot access is more a behavior belonging
to classes than to objects. It can therefore be argued that methods specialized to class
meta-classes are more appropriate for modifying slot access behavior. A second reason for
using the meta-level is that this enables individual classes to have special slot access
behavior which is not passed down to its subclasses. The solution proposed in the ques-
tion would need to work through the subclassing mechanism, making the scope of the
slot access behavior modification less easily limited: once the behavior was inherited, it
would be propagated to all subclasses.

Slot Access Intercession

• @slotRef is the generic function that is called to
implement slot access. It receives as arguments the
class of object, the object and the slot name.

• Methods specialized to subclasses of @Class may be
added to @slotRef . These may override the system
method.

Tutorial.book : Chap6.frm 216 Sun Sep 8 16:44:46 1996

216 Open Implementations and Metaobject Protocols

With this piece of protocol, the programmer of this example can solve the
second of his problems: modifying slot access behavior to support lazy
slots. This takes the form of an @slotRef method on @LazyInitClass

which was already introduced on page 208.

The callNextMethod returns a value if either the slot is not lazy, or if it is
lazy but has been accessed before1. If the slot is lazy, @lazy-

SlotInitValue finds the proper initial value and caches it into the slot,
so that it will be found on any subsequent @slotRef calls for this object
and slot.

1. Note that for simplicity uninitialized, non-lazy slots are ignored here.

Extending @slotRef (1/2)

method @slotRef (@LazyInitClass c,
 obj,
 slotName) {

var value = callNextMethod();
if defined(value)

return value;
else

value = lazySlotInitValue(obj, slotName)
return value;}}}

Tutorial.book : Chap6.frm 217 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 217

The lazySlotInitValue is a generic function to which methods may be
added for base level classes. It is responsible for initializing values of lazy
slots when they are first accessed. Methods might initialize all slots of all
objects of a class the same way, they may perform different initializations
for each object, or they might treat different slots differently, but treat all
objects of a class the same.

The code above does the latter. If the slot passed into the method on Truck

is a lazy truck slot, the correct value for the respective slot is retrieved from
a file. Otherwise the method defers to methods that might be defined on
the superclasses of Truck . The value retrieved is placed in the proper slot
to cache it.

The method on Object , the root of the base level inheritance graph,
catches cases of undefined lazy slots.

This concludes the lazy slots example.

Extending @slotRef (2/2)

generic lazySlotInitValue(obj, slotName);
method lazySlotInitValue (Object x, slotName) {

error(“No such lazy slot.”);};
method lazySlotInitValue (Truck obj, slotName) {

var value;
if slotName == “side”

value = fetchFromFile(“/truck.side”);
if slotName == “front”

value = fetchFromFile(“/truck.front”);
else value = callNextMethod();
@slotSet(@classOf(obj), slotName, value);
return value;}

Tutorial.book : Chap6.frm 218 Sun Sep 8 16:44:46 1996

218 Open Implementations and Metaobject Protocols

This new request tests the generality of the new @slotRef protocol.

This programmer has a banking application, and his objects hold informa-
tion such as account balances, or credit line information. But bankers
always like to look over each other’s shoulders, and so they want also to
store information about the slot values themselves. They may, for example,
want to see the credit level and then want to find out who most recently
adjusted that credit level. The programmer originally tried this by adding
additional slots with this information. But what he really wants is some-
thing like subslots.

I Need More Than Slots…

In my banking application I keep information in slots. But I
want the ability to store information about the information. I
tried to keep extra slots for additional material, but that
was hard to maintain and confusing. I would like to have
something like sub-slots or slot attributes, that are
inherited by subclasses.

Tutorial.book : Chap6.frm 219 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 219

Here is a syntax which would fit the syntax pattern that has evolved
throughout the previous examples: the use of a class option to introduce a
new notion. In this example usage, two attributes, dateSet and whoSet

are provided for the slot level . They could be used as shown. The pro-
grammer can use attributeSet and attributeRef to set and retrieve
attribute values for slots. Once the attributeSet mechanism was avail-
able, one could imagine using the slot access intercession techniques of the
previous example to set the date and operator attributes automatically.

This Programmer Wants to Write

class Rating ()
 (name level)
 @AttributesClass(list(list(“level”,“dateSet”),
 list(“level”,“whoSet”)));

cr = new Rating()

cr.level = 3000
attributeSet(cr, “level”, “dateSet”, “9/27”)

cr.level --> 3000
attributeRef(cr, “level”, “dateSet”)--> “9/27”

Tutorial.book : Chap6.frm 220 Sun Sep 8 16:44:46 1996

220 Open Implementations and Metaobject Protocols

To implement this object system extension, the programmer needs to
accomplish two tasks: he must maintain information with each class about
which slots have which attributes, and he must find a way to store the
actual attribute values in each object.

The main job for the programmer now is to find out whether the current
MOP is powerful enough to let him accomplish these subgoals.

The first is simple. It is almost like class authors or lazy slots and can be
handled by intercessory techniques at the meta interface.

But the MOP developed thus far says nothing about how to add informa-
tion to objects for which space has not already been provided by slot defi-
nitions in the class. So the MOP designer needs to work to cover this
terrain. Here is a visualization of the situation.

What Is to Be Done?

This is again a two-part problem:

1. Class must have information on which slot has which
attributes (analogous to @classSlots)

2. Must keep attribute values in each object (analogous to
slot storage in objects)

Will require knowing where in the object to look for each
attribute—more protocol will be needed.

Tutorial.book : Chap6.frm 221 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 221

One way to think about the role of classes which helps in this situation, is
to think of them as maps to the layout of the objects made from them.
Objects are blobs of storage. In order to get/set slot values in them, there
needs to be a mapping from the slots names to their locations in objects.
Classes perform this mapping function. For example, this figure shows a
visualization of the metaobject which represents the Rating class. On the
right is the representation of an example object created from this class. The
metaobject provides object information—such as the names and number of
slots—which is needed to update or retrieve slots in the object.

Now, how could attributes fit into this?

Class Is a Map to Objects (1/2)

name: rating

direct-slots: (name level)
slots: (name level)

 Class Rating

Sally

3000

#<Rating 1>

name

level
...

Tutorial.book : Chap6.frm 222 Sun Sep 8 16:44:46 1996

222 Open Implementations and Metaobject Protocols

One way could be to just generalize from how slots are handled and to
give the programmer appropriate abstractions into the mapping function-
ality.

This would imply an expansion of the mapping facilities of classes to cover
access to attributes as well as slots. This figure illustrates what needs to
happen. In analogy to slots, space must be provided in class metaobjects to
hold information about attributes defined on the class directly, and about
the ones inherited from superclasses.1

If a new piece of MOP were to be worked out carefully enough, the pro-
grammer could cleanly use the meta interface to extend the default object
layout strategy shown above the line in the figure.

In the following, the problem of the programmer adding information
about attributes to classes will be solved. Then the MOP designer will find
a way to provide an abstraction for adding space to base-level objects.

1. The map could be made more space efficient by not repeating the slot
name each time. Doing that introduces some uninteresting complexity,
so it will be done this way here.

Class Is a Map to Objects (2/2)

9/27

Bill

name: rating

direct-slots: (name level)
slots: (name level))

 Class Rating

direct-attributes: ((level dateSet)
 (level whoSet))

attributes: ((level dateSet)
 (level whoSet))

Sally

3000

#<Rating 1>

name

level

level dateSet
level whoSet

Tutorial.book : Chap6.frm 223 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 223

Adding space for the information in the class is simple. It works just like
authored classes.

But there is one issue which has not been addressed in previous examples:
the programmer needs to decide on and implement an appropriate inherit-
ance behavior for attributes. Examples: what should happen with
attributes defined in superclasses? Should they be inherited or ignored?
What to do with the same attribute handed down from several super-
classes?

The programmer can again take the corresponding handling of slots as a
template for this.

Keeping Information about Attributes
Intercession Again

class @AttributesClass (Class)
 (directAttributes,
 attributes);

like direct-slots

like slots

Tutorial.book : Chap6.frm 224 Sun Sep 8 16:44:46 1996

224 Open Implementations and Metaobject Protocols

Remember how slot information is inherently prepared during class initial-
ization. First, the slots defined directly on the new class are stored in the
metaobject describing the class. Then @computeSlots derives informa-
tion about slots that are being inherited from superclasses. This informa-
tion is stored in the class metaobject as well.

Something like this is clearly needed for attributes.

Remember Class Initialization

initializer @Class(c,
 name,
 directSupers,
 directSlots) {

c.name = name;
c.directSupers = directSupers;
c.directSlots = directSlots;

updateDirectSupers(directSupers, c);

c.cpl = @computeCpl(c);
c.slots = @computeSlots(c);}

direct
properties

backlinks

derived
properties

Tutorial.book : Chap6.frm 225 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 225

The programmer can use the same pattern. In the initializer for his
@AttributesClass he can install the attributes which are directly
defined for the new class in the class metaobject and then call a new
generic function, @computeAttribs to compute the inherited ones. The
code above provides the initialization for the direct attributes and attribute
entries shown below the implementation/meta interface line on page 222.

Imitation…
…Is the Sincerest Form of Flattery

initializer @AttributesClass(c,
 className,
 directSupers,
 directSlots,
 directAttributes) {

c.directAttributes = directAttributes;
c.attributes = @computeAttribs(c);}

Tutorial.book : Chap6.frm 226 Sun Sep 8 16:44:46 1996

226 Open Implementations and Metaobject Protocols

This programmer will settle on very simple inheritance behavior for
attributes: All attributes in superclasses are inherited. If several with iden-
tical names are handed down, one attribute of that name is retained. With
this decision, the actual code for the attributes computation is simple. The
method above runs through the CPL, asking each ancestor class about the
attributes defined on it. The union of the answers is the set of inherited
attributes.

But simple as it seems, this code conceals a problem similar to, but worse
than one that came up earlier in the context of authored classes: what if not
all the new class’s superclasses are @AttributesClass kinds of classes?
Then the class metaobjects describing those classes would not know how
to respond to the @classDirectAttribtes message! This code would
be in trouble. So the programmer will have to work out what to do in such
cases. One reasonable solution semantically is to say that all such super-
classes are simply classes which have no attributes defined on them. How
can these semantics be implemented?

Inheritance of Attributes

method @computeAttribs(@AttributesClass c) {
var result = list();

foreach (ancestor, @classCpl(c))
union(result,

@classDirectAttributes(ancestor));
return result;}

Must be careful!

Tutorial.book : Chap6.frm 227 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 227

As was done in the case of authored classes, the way to do this is to make
@classDirectAttributes be a generic function, rather than just a reg-
ular function. This allows the programmer to ensure that even the default
@Class knows about @classDirectAttributes . He does this by pro-
viding a method on @classDirectAttributes for @Class which
returns an empty list. When inheritance is used to extend any object-ori-
ented system, the inheritance hierarchy sometimes needs to be “stitched
together” like this.

Note that none of the rules have been violated because, even though the
programmer is specializing on a default (built-in) meta-level class, he is
just adding a generic function, not overriding one.

Non-Attributes Class Inheritance

CPL will contain classes that are not objects of
@AttributesClass . They need to be handled
gracefully.

generic @classDirectAttributes (c);

method @classDirectAttributes (@Class c) {
return list();}

method @classDirectAttributes(@AttributesClass c){
return c.directAttributes;}

Tutorial.book : Chap6.frm 228 Sun Sep 8 16:44:46 1996

228 Open Implementations and Metaobject Protocols

The first part of the agenda has now been covered. No MOP extension was
necessary for it. The programmer was able to handle this part on his own.

But he has not yet obtained any storage in objects to store attribute values.
As noted before, this is not possible with the current MOP, and the MOP
designer needs to develop a new piece of protocol.

What Next?

The two-part problem:

Class must have information on which slot has
which attributes (analogous to @classSlots)

Must keep attribute values in each object (analogous
to slot storage in objects)

Now more detail will be examined to see how storage in
objects is managed and accessed.

Tutorial.book : Chap6.frm 229 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 229

The visualizations shown so far of the information stored in class metaob-
jects were actually simplified. The information is in fact more detailed than
was disclosed. In particular, each class metaobject needs to hold not just
the names of slots but also their position within objects of that class. Other-
wise the slot access mechanism would be unable to locate any particular
slot within an object. So, in reality, the mapping from slots names to stor-
age in objects is conceptually done more like this: in their list of slots,
implementations probably keep detailed layout information for each slot.
This would be true even more in typed models where values can be less
than one word long, making precise locatability of slot values in memory
more tricky. When slots are computed during class initialization, not only
the full set of inherited and direct slots is therefore obtained, but also their
locations in future objects of the class.

The notation used here uses #0 to indicate a slot in the zero’th position
within each object of the class; #1 means the first position, and so on.

The Maps in More Detail
In reality, classes have a detailed map of where in their
objects each slot can be found.

name: rating

direct-slots: (name level)
slots: ((name #0)

 (level #1))

 Class Rating

Sally

3000

#<Rating 1>

name

level

...

Location of the slots
in the object

Tutorial.book : Chap6.frm 230 Sun Sep 8 16:44:46 1996

230 Open Implementations and Metaobject Protocols

Here is the draft of a protocol that will eventually give the programmer the
ability to solve his problem. In this new protocol, the designer changes
@computeSlots to return pairs of slot names and their locations within
objects. Notice that, in contrast to the preliminary visualization of page 229
which showed conceptually what happens in implementations and there-
fore used integers to exemplify slot location, the MOP designer is more
abstract in the published protocol, talking instead simply of “locations”
that are returned by @computeSlots . These locations can take any form
decided on by the respective implementation.

The protocol above retains the specification that @classSlots simply
returns a list of names, rather than names and locations, because earlier
examples showed that this is often the most convenient behavior. The new
@classSlotLocations can be used to get a hold of slot locations.

@slotRef and @slotSet are built on top of more primitive functions
which take a location specification and access the respective slot in a given
object.

Each of these will be examined now.

Slot Maps—Official Documentation

• @computeSlots produces slot-name and location
pairs

• @classSlots returns just the names

• @classSlotLocations returns names and locations

• Methods on @slotRef and @slotSet use very low
level object access by location

Tutorial.book : Chap6.frm 231 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 231

Here is the implementation of @classSlots and @classSlotLoca-

tions , the first returning just slot names, the second the slot/location
pairs.

Slot and Location Accessors

function @classSlots (c) {
var result = list();
foreach (slotDescription, c.slots)

extend(result, first(slotDescription));
return result;}

function @classSlotLocations (c) {
return c.slots;}

Tutorial.book : Chap6.frm 232 Sun Sep 8 16:44:46 1996

232 Open Implementations and Metaobject Protocols

How does the new @computeSlots work? It will go through each of the
slots (foreach ...), directly defined on the class, or inherited, and use the
primitive @allocateLocation to obtain a position in future objects for
each of these slots. At runtime, when objects are created, they will have
enough memory allocated for them to hold all slots.

@allocateLocation returns some quantity (location) that can be passed
to access functions to get and set slot values at runtime. Again, these are
just cookies, nobody outside of the object system implementation can use
them for anything other than for passing them to other functions that
expect them.

Reserving Locations for Slots

method @computeSlots (@Class c) {
var result = list();
foreach (slotName, @allSlotNames(c)) {

var loc = @allocateLocation(c);
extend(result, list(slotName, loc));}

return result;}

function @allSlotNames (c) {
var result = list();
foreach (ancestor, @classCpl(c))

union(result,
@classDirectSlots(ancestor));

return result;}

Tutorial.book : Chap6.frm 233 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 233

In particular, @slotRef uses the fast, low-level function @objectRef

which takes an object and a location previously produced by @allocate-

Location and returns the value stored there.

New Slot Access Method

method @slotRef (@Class c, obj, slotName) {
var loc = lookup(slotName, c.slots);
if (defined(loc))

return @objectRef(obj, loc);
else

error(“Can’t find slot.”);}

Tutorial.book : Chap6.frm 234 Sun Sep 8 16:44:46 1996

234 Open Implementations and Metaobject Protocols

Object maps, locations and the increased exposure of detail in slot access
represent a layer of protocol below the @slotRef/@slotSet protocol
introduced so far. Since the programmer will need to rely on these notions
for his attribute solution, the MOP designer needs to write them into the
official protocol. They also form the basis for alternative slot access behav-
ior the meta programmer might want to implement.

Protocol for Object Locations

• @allocateLocation can be called during class ini-
tialization only, to request that a location be allocated in
each future object of the class. Each time it is called for
a class, it returns a different location.

• @objectRef and @objectSet take objects and loca-
tions and reference/set that location in the object. The
object must be an object of the exact class for which
@allocateLocation returned the location.

Tutorial.book : Chap6.frm 235 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 235

And with this piece of protocol in place, it becomes clear how the program-
mer will obtain space for his attributes in objects: he simply mimics the
basic slot access mechanism just shown. The programmer extension code,
in addition to computing the names of all attributes during class initializa-
tion, also requests space for them in the future objects. Reading and writ-
ing of the attributes will call the low-level accessors.

Maps for Attributes

9/27

Bill

name: rating

direct-slots: (name level)
slots: ((name #0)

 (level #1))

 Class Rating

direct-attributes: ((level dateSet)
 (level whoSet))

attributes: (((level dateSet) #2)
 ((level whoSet) #3))

Sally

3000

#<Rating 1>

name

level

level dateSet
level whoSet

Tutorial.book : Chap6.frm 236 Sun Sep 8 16:44:46 1996

236 Open Implementations and Metaobject Protocols

Here is that extension code. @computeAttribs1 collects the names of all
attributes in the class being defined when the method is called. The calls to
@allocateLocation within the @computeAttribs method then
ensure that extra space will be allocated in future objects to hold the
attributes.

Obtaining Locations for the Attributes

method @computeAttribs(@AttributesClass c) {
var result = list();
foreach (attribute, @computeAttribs1(c))

extend(result, list(attribute,
 @allocateLocation(c)));

return result;}

method @computeAttribs1(@AttributesClass c) {
var result = list();
foreach (ancestor, @classCpl(c))

union(result,
@classDirectAttributes(ancestor));

return result;}

Tutorial.book : Chap6.frm 237 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 237

Accessing attributes, finally, works analogously to slots. The lookup call
tries to find the proper entry in the attributes/attribute-location list kept in
the class metaobject, extracting the attribute’s location if an entry is found.
In that case it uses the low-level @objectRef to retrieve the attribute’s
value from the given object.

Accessing Attributes

function attributeRef (obj, slot, attribute) {
return @attributeRef(@classOf(obj),

 obj,
 slot,
 attribute);}
method @attributeRef (@AttributesClass c,
 obj, slot, attribute) {

var loc = lookup(list(slot,attribute),
 c.attributes);

if defined(loc) return @objectRef(obj, loc);
else

error(“No such attribute”);}

Tutorial.book : Chap6.frm 238 Sun Sep 8 16:44:46 1996

238 Open Implementations and Metaobject Protocols

The protocol has now moved well beyond the purely introspective facili-
ties of Chapter 3 and the explicit invocation protocols of Chapter 4. Inter-
cessory techniques first allowed the programmer to add state and
behavior. Then they enabled the deeper modification of inheritance behav-
ior. Next, the lazy slots example demonstrated how the setting and refer-
encing of slots can be controlled with an appropriate protocol in place.
Finally, the protocol was extended to provide control over how much space
was allocated in objects. Note that while the programmer was inched
closer and closer to the implementation in this chapter, the boundaries
between programmer and implementations were never allowed to vanish
altogether. The protocol for slot allocation of page 234, for instance, does
not expose how object storage is allocated and where. This remains for
each implementation to decide.

Anything Else to Try?

Tutorial.book : Chap6.frm 239 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 239

Lazy slots were the first example in which the programmer used open
implementations technology not to add or change features, but to move the
substrate towards more efficient treatment of a particular application or a
class of applications.

The application programmer frequently can and wants to provide valuable
information to substrates about the resource usage profile of his pro-
grams—if only a channel for such communication is provided. One role of
metaobject protocols is to allow for the construction of such channels, and
for the ability of substrates to take advantage of the information passed in
through them.

Using MOPs to Optimize Applications

So far, users have mostly been allowed into the
implementation to extend or modify behavior.

What about letting them extend or modify the
implementation strategy to improve the performance of
their program?

Tutorial.book : Chap6.frm 240 Sun Sep 8 16:44:46 1996

240 Open Implementations and Metaobject Protocols

Here is a problem that is reasonably common. What exactly is this person
is talking about?

It’s Such a Waste

In tracking diseases around the world, I use two classes:
Place and Person . The Place class just has slots for
country, city, and hospital. The Person class has many
different slots describing a person’s personal profile. But in
any given case, only a few of these slots are needed
because the other information is not available. My runtime
gets unnecessarily large because of all the Person
objects with hundreds of empty slots.

Tutorial.book : Chap6.frm 241 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 241

He has this unremarkable Place class, with a few slots that are filled in
with relevant information.

The Problem (1/2)

class Place ()
 (country,
 city,
 hospital);

For each slot, the default implementation allocates one
location in the object.

This is fine for the Place class. But…

#<Place 1>

France

Paris

Municipal

Tutorial.book : Chap6.frm 242 Sun Sep 8 16:44:46 1996

242 Open Implementations and Metaobject Protocols

The problem lies in the classes with many slots, only few of which are used
in any given object. This might be true because the information is not avail-
able, or because the objects represent sparse matrices, or for any number of
other reasons. The point is that each object is very large, because the entire
set of—mostly empty—slots is allocated each time. This is wasteful.

The Problem (2/2)

class Person ()
 (placeOfBirth, age, vitaminA,

 vitaminB, … vaccinations,

 maternalHealth, paternalHealth,

 exercise …);

#<Truck 1>

Paris

Polio
Each object requires lots of
unnecessary storage

Tutorial.book : Chap6.frm 243 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 243

Unless some ways can be provided for this application to run more effi-
ciently, this programmer will be forced into developing his own data struc-
tures, losing the benefits of object-oriented programming, and maybe
introducing other deficiencies as well.

In most object systems without a MOP, implementation decisions about
storage strategy are irreversible. If open implementation technology lives
up to expectation, this programmer should be able to do better.

Allowing Space Optimization

• Normally, such implementation decisions are irrevers-
ible.

• The programmer would have to implement the code
some other way. But TinyObjects has so much of what
is needed.

• Can an open implementation allow the programmer to
adjust the default implementation to tailor for this pro-
gram’s performance profile?

Tutorial.book : Chap6.frm 244 Sun Sep 8 16:44:46 1996

244 Open Implementations and Metaobject Protocols

Ideally, objects would be created without any storage. Room for slot values
would be allocated on demand. From the outside, this behavior would be
transparent: the objects would behave the same way as regular objects.

Which Implementation Is Needed?

• This programmer wants Person objects that are ini-
tially empty, requiring minimal storage, even though all
the slots appear to be present. When any of those slots
are set, storage is allocated for that one slot.

• Such dynamically allocated slots are called dynamic

Tutorial.book : Chap6.frm 245 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 245

Here is a graphical way of showing this: The peter object created at the
top results in an object “stub” with no associated storage (top right). As the
exercise slot is set, one slot’s worth of storage is allocated in the peter

object. Setting the age slot further enlarges the object dynamically at run-
time.

Using Dynamic Slots
Conceptually, Objects Grow at Runtime

peter = new Person();

peter.exercise = “no”

peter.age = 72

no

no

72
...

...

#<Person 2>

#<Person 2>

#<Person 2>

Tutorial.book : Chap6.frm 246 Sun Sep 8 16:44:46 1996

246 Open Implementations and Metaobject Protocols

What are the subgoals the programmer needs to accomplish towards real-
izing this behavior? (1) A decision has to be made about the inheritance
behavior of dynamic slots. This is really a piece of object model design that
the programmer needs to work out. He knows best how his application
would benefit most. (2) The system must be prevented from allocating the
initial storage for the slots when the class is first defined and (3) the
dynamic allocation itself must be made to occur when slots are updated.

What Are the Issues?

• How to determine which slots should be dynamic

• How to prevent the system from allocating storage for
dynamic slots

• Dynamically allocating and accessing storage

Tutorial.book : Chap6.frm 247 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 247

On the first point, the programmer decides for the simplest solution: All
the slots defined on a dynamic class will automatically be dynamic. More
fine-grained solutions are, of course, imaginable. One could, for example,
introduce options at the slot level, which would allow individual slots to
be marked as dynamic.

Here is how dynamic slots could look to the programmer.

Extension Design…
…Is Object Model Design

Must decide which slots in a class will be dynamic. All?
None? An explicit option?

Decide that all slots defined directly in a class marked as
dynamic will be dynamic slots. One could, of course, do
something more fancy.

Tutorial.book : Chap6.frm 248 Sun Sep 8 16:44:46 1996

248 Open Implementations and Metaobject Protocols

In this example all the Person slots will be dynamic. But dynamic classes
may inherit from non-dynamic ones, so the soul slot will be treated nor-
mally, having storage allocated for it right away whenever a Person object
is created.

Classes with Dynamic Slots

class Creature ()
 (soul);

class Person (Creature)
 (placeOfBirth, age, vitaminA,
 vitaminB,... vaccinations,
 maternalHealth, paternalHealth,
 exercise...)

@DynamicClass;

All but the soul slot will be dynamic.

Tutorial.book : Chap6.frm 249 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 249

Here is a conceptual depiction of an appropriate implementation for this
behavior. Initially, the Person object above has only two fields of storage:
one to hold a data structure that will contain all the values of dynamic slots
as they are set during runtime, the other to hold the soul value.

When the peter object’s age slot is set to 10, the dynamic values data
structure starts to get filled with a slot-name/value pair: (“age” 10) .
Alternative data structures could, of course, be used to satisfy different
performance requirements.

Whenever a slot is set that was never set before, a new pair, such as
(“exercise” soccer) will be added to the dynamic values data struc-
ture. If a slot has been set before and is updated, the value will be modified
in place.

Storage Layout for Person Objects

#<Person 3>

()

 #<Person> 3>

null

null

peter.age = 10
peter.exercise = “soccer”

((“age” 10)
 (“exercise” soccer))

Tutorial.book : Chap6.frm 250 Sun Sep 8 16:44:46 1996

250 Open Implementations and Metaobject Protocols

Regarding slot allocation, there are three subissues to consider: one addi-
tional storage location must be requested to be allocated in each future
object to hold the values of dynamic slots. This is like slipping an invisible
slot into those objects. Then, a method on @computeSlots must be writ-
ten which will prevent future objects from having space allocated for the
dynamic slots. Finally, a new @slotRef method must extract slot values
from the right places in the object.

How to Prevent Storage Allocation

There is a need to…

• Request one location in each future object to hold a
datastructure for dynamic slot values

• Override @computeSlots to not allocate individual
locations for dynamic slots

• Specialize @slotRef to deal with both dynamic and
regular slots

Tutorial.book : Chap6.frm 251 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 251

Towards finding solutions to slot allocation management, let us get back to
viewing classes as storage maps. On the left of the figure above is the first
draft of a map view for a class with dynamic slots. The soul slot is repre-
sented normally, as a name/location pair. The dynamic slots do need to be
represented in the class, because browsers and other tools need to see
them, even if they have never been set before in a given object and there-
fore do not have an allocation there. Yet they will not have an offset loca-
tion associated with them in the class. Something will need to replace the
location part of the slot information for dynamic slots in the map, which is
why the location spot for the dynamic slots are left blank in the figure.

A place in the class to remember the location of the dynamic values in
objects is also needed: in this example, it happens to be first, but program-
mers cannot count on that.

Storage Map for Dynamic Classes

slots: ((soul #1)
 (birthPlace ?)
 (age ?)

(exercise ?))

 Class Person

...

peter.age = 10
peter.exercise = “soccer”

((“age” 10)
 (“exercise” soccer))

#<Person 3>

()

 #<Person> 3>

null

null

Tutorial.book : Chap6.frm 252 Sun Sep 8 16:44:46 1996

252 Open Implementations and Metaobject Protocols

The dvalLoc in this updated view will be used for this last purpose. It
allows meta programs to find the dynamic slot-name/value pairs for any
object of the Person class.

Where Objects Store Dynamic Values

slots: ((soul #1)
 (birthPlace ?)
 (age ?)

 (exercise ?))
dvalLoc:#0

 Class Person

...

...

 #<Person 3>

()

 #<Person> 3>

null

null

peter.age = 10
peter.exercise = “soccer”

((“age” 10)
 (“exercise” soccer))

Tutorial.book : Chap6.frm 253 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 253

Adding this space in the class metaobject is easily done with intercession,
so we get that task out of the way right here.

During the initialization of dynamic classes, @allocateLocation

requests a location, which is then saved in the class metaobject (c.dval-

Loc). Remember that @allocateLocation does not allocate any space
right away. It simply makes the promise that one additional space will be
allocated in every future objects of the class c , and it returns a location
which, when handed to @objectRef or @objectSet with an object, will
access that location in that object.

Building the Storage Map

class @DynamicClass (@Class)
 (dvalLoc);

initializer @DynamicClass (c,
 className,
 directSupers,
 directSlots) {

c.dvalLoc = @allocateLocation(c);}

Tutorial.book : Chap6.frm 254 Sun Sep 8 16:44:46 1996

254 Open Implementations and Metaobject Protocols

Since dynamic slots have no normal locations, they need to have a non-
standard appearance in the storage map so that they can be recognized
when slots are accessed at runtime. Instead of a storage location, the value
part of entries for dynamic slots in the class will therefore contain the
string “dynamic.”

Marking the Dynamic Slots

slots: ((soul #1)
 (birthPlace “dynamic”)
 (age “dynamic”)

 (exercise “dynamic”))
dvalLoc:#0

 Class Person

...

...

#<Person 3>

()

 #<Person> 3>

null

null

peter.age = 10
peter.exercise = “soccer”

((“age” 10)
 (“exercise” soccer))

Tutorial.book : Chap6.frm 255 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 255

Here is the @computeSlots method for dynamic classes which puts all
this information together when a new class is being initialized. Given a
dynamic class metaobject c , it builds the list of slot-name/location-infor-
mation, collecting all the slots defined in c and all the ones that come down
from c ’s superclasses. It checks each slot to see whether it is dynamic.
Depending on the decision, it fills in the slot information in the class
metaobject: a regular location, or the string “dynamic.”

Completing the Storage Map (1/2)

method @computeSlots (@DynamicClass c) {
var result = list();
foreach (slotName, @allSlotNames(c)) {

var tst = slot should be dynamic?;
var loc;
if defined(tst)

loc = “dynamic”
else

loc = @allocateLocation(c);
extend(result, list(slotName, loc));}}

Tutorial.book : Chap6.frm 256 Sun Sep 8 16:44:46 1996

256 Open Implementations and Metaobject Protocols

Completing the Storage Map (2/2)

For this extension, the should be dynamic? test would go
through the CPL to look for the first class in which the slot
is directly defined. If that class is dynamic, so is the slot.

A different design is possible. This predicate could even
be a generic function itself.

Tutorial.book : Chap6.frm 257 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 257

Here is a predicate which, given a class metaobject and a slot name, will be
true or false, depending on whether that slot is dynamic.

Note that @computeSlots now incorrectly began to return a datastruc-
ture which is different from what has been required since the MOP specifi-
cation on page 230: the location information for slots may now sometimes
be the string “dynamic.” The protocol will therefore have to be made
slightly more liberal. But not before an analysis is made as to which parts
of the protocol are affected by this new form of slot information. It turns
out that @slotRef and @slotSet are the generic functions whose meth-
ods make use of the slot information. If the form of that information is
changed, they must be updated too.

Dynamic Slot Testing

function @isDynoSlot (c, slotName) {
var slotLocs = @classSlotLocations(c);
var loc = lookup(slotName, slotLocs);
return (loc == “dynamic”);}

Tutorial.book : Chap6.frm 258 Sun Sep 8 16:44:46 1996

258 Open Implementations and Metaobject Protocols

Here, then, is an @slotRef method for dynamic classes. It checks whether
the slot to fetch from is dynamic. If yes, it retrieves from c the location
where dynamic slot values are kept in c ’s objects. Using this location, it
reaches into the object through @objectRef to retrieve the slot/value
pairs. The call to lookup returns the value for the slot.

If the slot to be fetched is not dynamic, this method defers to the default
way of doing slot access business (callNextMethod).

It is thus easy to write an @slotRef that handles the alternate slot infor-
mation produced by the new @computeSlots . But the necessity to write
such a method must be documented.

Accessing Dynamic Slots

method @slotRef (@DynamicClass c,
 obj,
 slotName) {

if (@isDynoSlot(c,slotName)) {
var dvalLoc = c.dvalLoc
var dvalues = @objectRef(obj, dvalLoc);
return lookup(slotName, dvalues);}

else
return callNextMethod();}

Tutorial.book : Chap6.frm 259 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 259

Note that the new @slotRef of page 258 does its job correctly, because it
calls callNextMethod only after ensuring that it is accessing a standard
slot.

This protocol is an example for a phenomenon often encountered in the
development of metaobject protocols. As with the @computeSlots ,
@slotRef , @slotSet triplet above, it is often necessary to require that
MOP users keep their methods on two or more generic functions consis-
tent with each other. Such requirements must be an explicit part of the pro-
tocol.

Allowing User-Defined Slot Maps

The @computeSlots GF must return a list of pairs
(name/allocation). If allocation is not a location returned by
@allocateLocation , then a method on @slotRef and
@slotSet must be defined to handle that slot.

Tutorial.book : Chap6.frm 260 Sun Sep 8 16:44:46 1996

260 Open Implementations and Metaobject Protocols

Here is a map of where we are. We introduced introspection for satisfying
applications needing information about a substrate. Explicit invocation
enabled programs to cause operations to be performed in the substrate,
without necessarily going through the regular syntax.

Intercession then allowed application programmers to add pieces of state
and behavior to the substrate. More radical forms of intercession, finally,
enabled the modification of substrate behavior and implementation strat-
egy choices.

Before continuing, let us quickly check whether any more rules of behavior
need to be added to the MOP, now that we added a bit more depth to what
programmers are able to do.

Intercession Takes Us Further

Object System is a Black Box

Read Information

Add State

Add Behavior

Introspection

Intercession

Call Substrate OperationsExplicit Invocation

Modify Behavior

Customize Implementation Strategy

Tutorial.book : Chap6.frm 261 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 261

Recall that up to intercession, programmers were not allowed to override
system methods. All they could do was to extend the substrate by subclass-
ing metaclasses and writing methods specialized to those subclasses.

In the context of intercession, the protocol sometimes allows the overriding
of system methods, that is the modification of existing substrate behavior,
provided this is explicitly stated in the protocol, and relevant semantic con-
straints are satisfied. We first saw this with @computeCpl whose system
method was allowed to be replaced for @FlavorsClass . The same is now
true for the @slotRef methods on dynamic classes. This relaxed condition
must, however, be specified in the protocol, which was done on page 230.

What about Our Rules?

For selected intercessory points, the MOP allows system
method overriding with relevant semantic constraints.
Examples: @computeSlots and @slotRef .

Note: It is still illegal to change methods of built-in system
classes.

Tutorial.book : Chap6.frm 262 Sun Sep 8 16:44:46 1996

262 Open Implementations and Metaobject Protocols

Here is a summary of the overrides that were made legitimate in the MOP
extensions for intercession.

Rules for Intercession

For the purpose of intercession the “no method override”
rule is relaxed for specific system GF’s:

• @computeCpl may be overridden, but the CPL
returned must include all supers and Object . (Note
that this is checkable).

• @computeSlots may be overridden but must obey
rules, and @slotRef must stay consistent.

• @slotRef may be overridden.

Tutorial.book : Chap6.frm 263 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 263

At first sight, intercession looks like classic software engineering: the sub-
strate is partitioned into appropriate modules, isolated from each other
through interface specifications. Ada, for instance, is a language founded
on this principle. If the partitioning and interface designs are done well,
modules may be replaced at will, without disturbing the overall operation
of the substrate and the applications based upon it.

But intercession goes one step further: it adds scope control.

Intercession is Software Engineering

Replacement
Module

Usage

Implementation

Tutorial.book : Chap6.frm 264 Sun Sep 8 16:44:46 1996

264 Open Implementations and Metaobject Protocols

As we saw in the @slotRef example reproduced above, MOP technology
allows programmers to replace a piece of substrate code, just like the mod-
ularity techniques of traditional software engineering. But while the
replacement in the previous figure replaces the code for everyone, this
@slotRef adjustment is visible only to users of the @LazyInitClass .

This is a key difference. The module replacements in a traditional software
engineering environment are just as much required to present a compro-
mise among multiple application demands as the modules they replace,
unless the substrate is being specialized to serve a narrow application com-
munity exclusively. The MOP techniques presented here allow multiple
applications or parts of applications to be served by one substrate, but
under the illusion that the substrate has been customized to serve each set
of particular needs.

Protocols Define Replaceable Units

class @LazyInitClass...;

method @slotRef(@Lazy-
Init...
 obj
 slotName) {

…}

 Truck

#<Truck 1>

tr1.side -->

@Class

@LazyInitClass
@slotRef

@slotRef

Tutorial.book : Chap6.frm 265 Sun Sep 8 16:44:46 1996

But I Could Make It Run Better for My Application… 265

The rules associated with intercession ensure that the substrate modules
will still fit together, after some of them have been modified or replaced.

Intercession Rules
Reliance on basic SE principles

• Rules ensure that modules fit together

• They guarantee independence from implementation
details

Tutorial.book : Chap6.frm 266 Sun Sep 8 16:44:46 1996

266 Open Implementations and Metaobject Protocols

All the elegance, programming and maintenance convenience provided by
the open implementation techniques presented would be useless if they
could not be realized efficiently. Implementors would simply refuse to pro-
vide implementations that support the protocols.

The following chapter will therefore take a good look at this central aspect:
how can MOPs be designed to allow efficient implementations?

Summary
Introspection —examination of selected system

internals.
Explicit Invocation —enabling programs to explicitly
invoke substrate operations, bypassing syntax in some
cases.
Intercession —metalevel specialization that adds to or
modifies existing features of the base object system:

Adding State
Adding Behavior
Modifying Behavior
Adjusting Performance

Tutorial.book : Chap7.frm 267 Sun Sep 8 16:44:46 1996

The question of performance has become more and more pressing as MOP
designers pushed more and more information and, especially, operations
from compile time to runtime. As things stand now, programmers have a
very flexible substrate, but their applications will be too slow.

In this chapter we will recover performance by a synthesis of techniques
known as incremental specialization. We will introduce some additional
techniques for designing protocols and show how standard compiler tech-
niques can be applied to MOP design and implementation.

Chapter 7 And I Want It All to
Be Fast!

Tutorial.book : Chap7.frm 268 Sun Sep 8 16:44:46 1996

268 Open Implementations and Metaobject Protocols

Ignore the MOP for a moment and consider what is important with regard
to performance when implementing just regular TinyObjects. There are
two main operations that object systems frequently perform at runtime
and that consequently need to be fast: method dispatch and slot access.
Instance creation is important as well, but techniques for the former two
will also cover instance creation.

Guiding our exploration in this chapter will thus be the two questions
above: what should statements like vote(...) and x.concerns compile
to in the presence of a MOP?

Let us look first at efficient implementations of these two operations, in the
absence of a MOP. This will give us a performance marker against which
we will be able to measure the MOP implementation solutions we come up
with.

Performance
Critical Parts of TinyObjects

Method dispatch:

vote(x, ...)

Slot access:

x.concerns compiles to ???

compiles to ???

...

...

...

...

Tutorial.book : Chap7.frm 269 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 269

Looking at dispatch first, how can implementations be made efficient? Tra-
ditionally this is done by following the standard technique of pre-comput-
ing as much as possible. The best case for the vote call above is when the
compiler can tell exactly which class x will be an object of. In that case, an
inline jump instruction is all that is left of the dispatch operation.

Sometimes it is not clear at compile time which exact class x will be of, but
the compiler can ensure that it will be one of a set of classes. In this case, a
table can be constructed which maps classes to jump destinations. At run-
time, the code inlined by the compiler accesses the table, looks up the class
x turns out to be an object of, and jumps to the correct location.

In practice, details such as the choice of information in the table and tech-
niques for table lookup matter and need to be considered carefully. But in
principle, the technique shown here is what makes method dispatch fast in
standard object-oriented object systems.

Method Dispatch
Traditional Optimization

Precompute as Much of Lookup as Possible.

vote(x, ...)

Exact class known
at compile time

Exact class not
known until runtime

jmp 7983

jmp [table-lookup]

#Politician 1387
#Elected 3491
#Senator 7983

Class PC

...

...

Tutorial.book : Chap7.frm 270 Sun Sep 8 16:44:46 1996

270 Open Implementations and Metaobject Protocols

Why are compiler writers allowed to take this shortcut around method dis-
patch? They may do it because the combination of generic function name
and the class of the argument uniquely determine which method to run. In
other words, method dispatch does not depend on the time of day or the
phase of the moon, but just on these two quantities.

Why Does This Approach Work?

…because object model semantics are fixed, and the
program is known. The implementation can therefore
determine when it is safe to memoize a shortcut.

GF name

+

exact class
of object

uniquely
determine

jump
address

Tutorial.book : Chap7.frm 271 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 271

Another way of looking at this is by using the timeline we saw earlier. In
traditional object systems the inheritance algorithm is fixed at design time.
When a particular program is read into the compiler, an analysis of the
class structure leads to the CPL of each class. Once a class’ CPL is known,
dispatch can be resolved just based on the class of the argument to a
generic function call. The time at which this resolution takes place is up to
the implementation. The point is that it can be done at compile time or
later, just as long as the CPL is known.

Action Times
In a Traditional Object Implementation…

Goal is to pre-compute
method lookup as much
as possibleInheritance

algorithm
known

Program known

CPL known

Time

RunLoadCompileObj model
design

Compiler
 design

Tutorial.book : Chap7.frm 272 Sun Sep 8 16:44:46 1996

272 Open Implementations and Metaobject Protocols

The question is whether the introduction of @computeCpl as a generic
function to which users may add methods has invalidated these basic facts
that enable compilers to take advantage of the shortcuts on page 269.

The answer is “no” because the timeline that takes @computeCpl into
account is almost exactly the same as before...

But What about @computeCpl ?

Has the flexibility introduced with the programmer’s ability
to provide methods on @computeCpl destroyed the
ability to optimize method dispatch?

No, because the protocol requires the CPL to be
computed early enough and to remain unchanged.

Tutorial.book : Chap7.frm 273 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 273

The inheritance algorithm is no longer known at object model design time,
because user methods on @computeCpl may change it. Only certain con-
straints on it are known at that early time, such as Object being at the root
of the inheritance tree (see the rules on page 187).

Instead, after the program is read at compile time, the inheritance mecha-
nism becomes available once the class metaobjects are created and the—
possibly non-standard—@computeCpl methods have done their job. At
that point, the CPLs are available, encoding within them all the implemen-
tation needs to know about inheritance.

Note that the CPL is known at about the same time as before. The MOP has
therefore not invalidated the assumptions underlying the dispatch optimi-
zations of page 269. Note as well the less obvious point that this scheme
requires the ability to run @computeCpl at compile time. The reason this
is not a problem goes back to the CPL rules on page 187 where MOP
designers required CPLs to be functions of the class graph only, which is
available at compile time. In this case of opening the inheritance imple-
mentation, careful protocol design therefore preserved the necessary opti-
mization opportunities.

With @computeCpl .

Inheritance algorithm known

Program known

CPL known

Time

RunLoadCompileObj model
design

Compiler
 design

Tutorial.book : Chap7.frm 274 Sun Sep 8 16:44:46 1996

274 Open Implementations and Metaobject Protocols

Looking at slot access, we will see that matters do not work out quite as
well as with the inheritance intercession we just examined.

Traditional slot access optimization techniques work analogously to
method dispatch: if the respective object’s class is known at runtime, access
to a known offset within the object’s storage can be inlined. Otherwise, a
class-based table lookup for the correct offset needs to happen at runtime.

Whether the class is known early or late, a fast implementation can there-
fore be provided.

Traditional Optimized Slot Access
Same Approach As Method Dispatch

x.concerns

Exact class known
at compile time

Exact class not
known until runtime

[@objectRef x #2]

[@objectRef

#Politician #0
#Elected #1
#Senator #2

Class PC

...

... x [table-lookup]]

Precompute as much as possible:

Tutorial.book : Chap7.frm 275 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 275

This works because in traditional object implementations the strategy for
managing storage for objects is known at compiler design time. Once the
program and the CPLs are known, slot locations will therefore be known as
well, and a class uniquely determines where in one of its objects a given
slot can be found.

Fast Slot Access—Traditional Case

Slot locations known

Program known

CPL known

The goal is to compute
slot location sometime
‘before’ runtime.

 Object layout

Time

RunLoadCompileObj model
design

Compiler
 design

 strategy known

Tutorial.book : Chap7.frm 276 Sun Sep 8 16:44:46 1996

276 Open Implementations and Metaobject Protocols

The MOP developed so far thoroughly broke this sequence. Its specifica-
tion required that every TinyObjects implementation call @slotRef . Let
us look at what this means.

We Committed to Huge Overheads!
The specter of @slotRef

Recall this spec:

 @slotRef is the generic function that is called to
 implement slot access. It receives as arguments the
 class of object, the object and the slot name.

 A generic function call for each slot access!

Tutorial.book : Chap7.frm 277 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 277

The call to @slotRef requires a method dispatch at the metalevel, because
a method may have been provided on the respective class metaclass. Often,
user-defined methods will check whether the slot being accessed is one of
the special ones they know how to manage. If not, they will generally defer
to the system default, requiring yet more dispatch activity, until, finally, the
actual object access is performed.

HUGE Overheads

x.slotName

@slotRef(...)
method dispatch
if some-test

special-case
 callNextMethod()
more dispatch
@objectRef(...)

...

...

Tutorial.book : Chap7.frm 278 Sun Sep 8 16:44:46 1996

278 Open Implementations and Metaobject Protocols

The dynamic slots of Chapter 6 are a good example. Once the dispatch to
the @DynamicClass ’ @slotRef is complete, the—potentially lengthy—
@isDynoSlot runs. If this test comes out negative, the callNextMethod

produces additional dispatching costs.

Case in Point:
Dynamic Slots…

method @slotRef (@DynamicClass c,
 obj,
 slotName) {
 if (@isDynoSlot(c,slotName)) {
 var dvalLoc = c.dvalLoc
 var dvalues = @objectRef(obj, dvalLoc);
 return lookup(@slotName, dvalues);}
 else
 return callNextMethod();}

 This worked, but…

Tutorial.book : Chap7.frm 279 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 279

Here is this bad news seen on the time line. The problem is that the object
layout strategy is known only at runtime.

Even if the code within @slotRef was fast, just the dispatch would be
much too expensive. Everything is happening too late and on every single
slot access.

Let us start by focusing on the meta-level dispatch overhead. We will do
this by considering only the system method for a moment.

Too Much of Slot Access at Runtime

Slot locations known

Program known

CPL known

Metalevel GF call,
dispatch overhead
(User method code),
location lookup…

Time

RunLoadCompileObj model
design

Compiler
 design

Tutorial.book : Chap7.frm 280 Sun Sep 8 16:44:46 1996

280 Open Implementations and Metaobject Protocols

In the case of default slot access, an expression like obj.state compiles
to @slotRef as shown. That default method finds the list of slot/location
pairs in the class metaobject, pulls out the appropriate location and fetches
the respective value from the object.

The goal is to reduce this process to what is shown on page 275.

A Closer Look at Slot Access
The System’s @slotRef Method

obj.state

@slotRef(@classOf(obj), obj, “state”)

method @slotRef (@class c, obj slotName) {
 var slots = @classSlotLocations(c);
 var loc = lookup(slotName, slots);
 return @objectRef(obj, loc);}

Tutorial.book : Chap7.frm 281 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 281

This reduction of runtime activity hinges on the implementation’s ability
to precompute at least some of what is currently happening at runtime. A
closer look reveals that neither the system nor the @DynamicClass

@slotRef code are taking advantage of what is known or computable
ahead of time.

Standard optimization techniques are all predicated on the assumption
that they can learn early about the class and the slot name involved in a
slot access. Therefore, if we where also to require those two quantities to be
known, we would be no more restrictive than traditional systems. These
two assumptions are a kind of upper bound on restrictions we allow our-
selves to make in the following.

What Can Be Precomputed?

What if the class and slot name are known at compile
time? (Same assumption taken by traditional object
system implementations.)

 What can be precomputed?

Tutorial.book : Chap7.frm 282 Sun Sep 8 16:44:46 1996

282 Open Implementations and Metaobject Protocols

Here is a copy of the @slotRef system method with all the pre-comput-
able or pre-known information underlined for the case when obj ’s class is
known at compile time. In that case, the @slotRef method to run can be
determined at compile time, because the relevant class metaobject can be
obtained from the class.

Proceeding into the system @slotRef method, compile time possession of
the class metaobject allows implementations to retrieve the list of slot-
name/locations early on as well. This in turn results in advance knowledge
of where in the object the respective slot will be located.

If one were to pull out all the underlined advance information, only the
@objectRef call would be left to do at runtime. In an analysis like this,
the work left over for runtime is called a residual.

Making no more restrictive a set of assumptions than compiler builders for
traditional object implementations thus took us to the same runtime com-
plexity they end up with. We still have to figure out how to take advantage
of these insights in the context of our MOP. But first let us see how the anal-
ysis works out for user-defined @slotRef methods.

Manually Pre-Computing Slot Access

obj. state

@slotRef(@classOf(obj), obj, “state”)

method @slotRef (@class c, obj slotName) {
 var slots = @classSlotLocations(c);
 var loc = lookup(slotName, slots);
 return @objectRef(obj, loc);}

Residual: @objectRef(obj, #2)

If class is known to be Senator
so class of class is @Class

Tutorial.book : Chap7.frm 283 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 283

The story in this case is very similar (refer to page 252 if you need a
refresher on this code). Compile time knowledge of obj ’s class allows
early determination of the correct @slotRef method to be run. Within that
method, the @isDynoSlot can be executed at compile time as well,
because it also depends merely on a knowledge of class and slot name.
Accessing the class metaobject’s information on where in its class’ objects
the dynamic slot values are stored can be done early as well (c.dvalLoc).

What is left to do at runtime depends on the slot: if it is dynamic, the
object’s dynamic values data structure must be retrieved (@object-

Ref(obj,#0)) and the value must be found within it (lookup).

If the slot is not dynamic, the implementation ends up with the residual
that would result from the callNextMethod . This is simply the system’s
default slot access which we have previously analyzed to have the residual
@objectRef(obj,#n) .

In other words, if implementors just make the same assumptions everyone
else makes—compile time knowledge of class and slot name—and perform
the underlining process appropriately, implementors of TinyObjects can be
as efficient with the MOP added as without it.

Optimizing User-Defined Slot Access
Precomputing As Much As Possible

obj.name
@slotRef(@classOf(obj), obj, “name”)
method @slotRef (@DynamicClass c,obj,slotName) {
 if (@isDynoSlot(c,slotName)) {
 var dvalLoc = c.dvalLoc
 var dvalues = @objectRef(obj, dvalLoc);
 return lookup(@slotName, dvalues);}
 else
 return callNextMethod();}
Residual:lookup(“name”, @objectRef(obj, #0))
 or: @objectRef(obj, #n)

If class is known to be Person
so class of class is @DynamicClass .

Tutorial.book : Chap7.frm 284 Sun Sep 8 16:44:46 1996

284 Open Implementations and Metaobject Protocols

The question is how these optimization opportunities can be realized, and
how they relate to the MOP.

The two possibilities are to accomplish all the pre-computations automati-
cally, or to modify the protocol a bit to provide for pre-computation explic-
itly. The first possibility would, of course, be preferable. But it could in
general involve unmanageable complexities, as code analysis of user-
defined @slotRef methods would be required. An implementation
would, for instance, need to analyze successfully whether predicates such
as @isDynoSlot may run at compile time or not. Components which
attempt this analysis are called partial evaluators, and they are subject of
research in many places (see bibliography).

In order to avoid difficulties with very general user-defined methods
where automatic analysis would be very difficult, we choose the second
alternative.

Two Strategies for Pre-Computation

1. Leave protocol unchanged and have implementation
do pre-computation automatically—constant-folding,
inlining, partial-evaluation techniques

2. Support optimizations directly by “currying” the protocol
to fit into standard optimizers

Tutorial.book : Chap7.frm 285 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 285

The MOP designers will change the protocol a little bit, to make the equiv-
alent of underlining explicit. Instead of providing @slotRef which runs
every time a slot is accessed, the new protocol would present the generic
function @slotRefResidual instead. Methods on this generic function
would be called once for each slot at compile time. Methods on @slotRe-

fResidual would have to return the kind of fragment we saw in the
underlining analysis. This would allow programmers to perform the anal-
ysis themselves, and to provide the result to the implementation at the
right time.

Here is what the TinyObjects system method would look like under this
new protocol.

A Change of Protocol
Letting Programmers Do the Underlining

@slotRef(c, obj, slotName)
 is the GF that is called to implement slot access and
 returns a base level result.

@slotRefResidual(c, slotname)
 is a GF that is called at class initialization time. It returns
 the residual of slot access to that slot in that class. This
 residual will be invoked at slot access time.

Tutorial.book : Chap7.frm 286 Sun Sep 8 16:44:46 1996

286 Open Implementations and Metaobject Protocols

Remember, this method does not do the actual slot access. It simply returns
a fragment which will be invoked at runtime to accomplish the slot access
then.

The residual to be returned is shown in square brackets. One way to return
a residual is to package it as a function. We will talk about other possibili-
ties a bit later on.

The code above, running sometime during class initialization, first
retrieves the list of c ’s slots. From it the slot’s location is obtained. When
the method returns the residual, the loc variable within it will have been
replaced with the actual location.

So, let us have our MOP designers document this new protocol.

Example
The Standard System Method

method @slotRefResidual (@Class c, slotName) {
 var slots = @classSlots(c);
 var loc = lookup(slotName, slots);
 return [@objectRef(obj, loc);];}

Tutorial.book : Chap7.frm 287 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 287

A curried protocol partitions the information needed to perform some fre-
quent operation into two groups: information that will be the same for suc-
cessive invocations, and information that will typically change each time.
In our example, the static information for slot access operations to objects
of a given class consists of the slot name and the class metaobject. The
information that varies between invocations is the object being accessed.

Based on this partitioning of information, the actions required to perform
the operation are partitioned into two groups as well, one that depends
only on the static information and the other that may depend on all the
information. The first group is performed only each time the static infor-
mation changes, and the results are saved, so that only the second group
needs to be performed each time the operation is invoked. In our example
the first group of actions is the test whether the respective slot is dynamic,
and the retrieval of the location where dynamic slot values are stored in
objects. The second group is the actual slot access.

When a protocol is curried, it is re-organized to take advantage of these
time savings. In our case, this meant introducing @slotRefResidual as
an opportunity for programmers to manually perform the partitioning.

A Curried Slot Access Protocol

During class initialization the GF:

 @slotRefResidual(c, slotName)

will be called once for each of the class’s slots, after the
CPL and slots have been computed and stored. It must
return a residual which accepts objects of the class and
produces the value of the slot slotName .

Tutorial.book : Chap7.frm 288 Sun Sep 8 16:44:46 1996

288 Open Implementations and Metaobject Protocols

In this sense, protocol currying is a kind of manual partial-evaluation,
allowing the user into the loop. It helps get around the fact that it is hard to
analyze code automatically. In terms of our timeline visualization, the new
protocol’s effect looks like this...

Programmer Explicitly Precomputes

System

Class definition

Program

Programmer precomputes
as much as possible

Request residual

Install residual

Fast slot access

Tutorial.book : Chap7.frm 289 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 289

Here is what the new protocol has done. It has pulled all slot access activity
forward in time to when class initialization happens, except for those
pieces that must truly occur at runtime. All that must happen there is to
look up the residual and to call it.

The Timeline View of the Protocol

@computeSlots

Program known

@computeCpl

(Lookup and)
call residual

@slotRefResidual

Time

RunLoadCompileObj model
design

Compiler
 design

Tutorial.book : Chap7.frm 290 Sun Sep 8 16:44:46 1996

290 Open Implementations and Metaobject Protocols

There are two tasks left to do. First, the MOP designers must show that the
new protocol has the same power as the old one, i.e., that programmers can
still accomplish the tasks that caused MOP designers to introduce slot
access protocols in the first place. Second, they need to show whether the
new protocol really allows slot access to be as fast as slot access without a
MOP.

Dynamic Slots Need to Be Reworked

• Dynamic slots were implemented with @slotRef . We
need to rework that extension using the new protocol

• Recall: Dynamic slots had storage allocation only when
needed

Tutorial.book : Chap7.frm 291 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 291

As a reminder, here is the slot access method for dynamic slots under the
old protocol. It checked whether the slot to access was dynamic. This
involved walking up the class hierarchy to see whether the slot was first
defined in a dynamic, or in a regular class. If the slot was dynamic, the old
@slotRef above found the location within the object where the dynamic
values list was stored. The value was then retrieved from there. Non-
dynamic slot access was deferred to the default method.

Dynamic Slots Under the Old Protocol

The old @slotRef protocol had programmers do this:

method @slotRef (@DynamicClass c,
 obj,
 slotName) {
 if (@isDynoSlot(c,slotName)) {
 var dvalLoc = c.dvalLoc
 var dvalues = @objectRef(obj, dvalLoc);
 return lookup(@slotName, dvalues);
 }
 else
 return callNextMethod();}

Tutorial.book : Chap7.frm 292 Sun Sep 8 16:44:46 1996

292 Open Implementations and Metaobject Protocols

Here is a programmer taking a first cut at converting this old method to the
new protocol. The programmer simply returns the body of the old method
as the residual to be executed at runtime. This does make a little progress
compared to the old way of doing it, in that it saves the runtime method
dispatch to @slotRef . But if programmers went with this approach, they
would miss the point. Most of the optimization opportunities would be
lost. Here is the timeline visualization of what would be going on.

Dynamic Slots For the New Protocol
A First Attempt…

method @slotRefResidual (@DynamicClass c,
 slotName) {
 return
 [if (@isDynoSlot(c,slotName)) {
 var dvalLoc = c.dvalLoc
 var dvalues = @objectRef(obj, dvalLoc);
 return lookup(@slotName, dvalues);}
 else
 return callNextMethod();];}

…only precomputes initial method dispatch.

Tutorial.book : Chap7.frm 293 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 293

Most of the work would still happen at runtime. They would not be taking
advantage of the new protocol which provides the opportunity for user-
supplied methods to be just as smart as system methods. The timeline pic-
ture above should look more like the following.

First Attempt Is Doing This

Is slot dynamic?
and

actual access

Time

RunLoadCompileObj model
design

Compiler
 design

Tutorial.book : Chap7.frm 294 Sun Sep 8 16:44:46 1996

294 Open Implementations and Metaobject Protocols

The check for whether the slot to access is dynamic should happen early.

It Could Do This

Is slot dynamic?

actual access

Time

RunLoadCompileObj model
design

Compiler
 design

Tutorial.book : Chap7.frm 295 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 295

A curried protocol provides programmers with the opportunity to think
about their code and make it as efficient as it can be. The underlining tech-
nique used earlier comes in handy again in finding a better @slotRefRe-

sidual .

We find that the check for whether the slot to access is dynamic can clearly
be done earlier than runtime and less often than during every slot access,
because both the slot name and the class hierarchy above c are available at
compile- or at least load time (@isDynoSlot).

The location of the dynamic values in objects of c can be retrieved from c

before runtime as well (c.dvalLoc).

After extracting the remaining residuals from the method above, we see
that they can be much slimmer than the simple-minded solution. What is
left in the case of dynamic slots is the lookup in the slot-name/value pair
list within the object or, in the case of standard slots, the normal default
residual.

So @slotRefResidual should be written differently.

Dynamic Slots for the New Protocol
Analyzing More Carefully

method @slotRefResidual (@DynamicClass c,
 slotName) {
 return
 [if (@isDynoSlot(c,slotName)) {
 var dvalLoc = c.dvalLoc
 var dvalues = @objectRef(obj, dvalLoc);
 return lookup(slotName, dvalues);}
 else
 return callNextMethod();];}
Residual should be:
 lookup(“name”, @objectRef(obj, #0))
or: @objectRef(obj, #n)

Tutorial.book : Chap7.frm 296 Sun Sep 8 16:44:46 1996

296 Open Implementations and Metaobject Protocols

Note the square brackets which, in our convention, contain the residual.
The dynamic slot test is done within this method which is called at compile
time for each slot of each dynamic class.

Dynamic Slots for the New Protocol

method @slotRefResidual (@DynamicClass c,
 slotName) {
 if (@isDynoSlot(c, slotName)) {
 var dvalLoc = c.dvalLoc;
 return
 [lookup(slotName,
 @objectRef(obj, dvalLoc));];}
 else
 return callNextMethod();}

Called at compile time

Return regular
slot residual

Dynamic Slot Residual:
lookup(“name”,
 @objectRef(obj, #0))

Tutorial.book : Chap7.frm 297 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 297

By changing the protocol, our MOP designers have now almost reached
their goal of matching the fast slot access in object systems without a MOP
(see page 275).

Implementors can now just use the standard table lookup techniques. Only
this time what is being looked up are residuals. If the exact residual can be
determined at compile time, it is inlined into the code. Otherwise, imple-
mentors build a table of possible residuals and inline code that looks up
the proper one at runtime.

We Are Almost There

x.concerns

Exact residual known
at compile time

Exact residual not
known until runtime

[@objectRef x #2]

[@callResidual

#Politician #[...]
#Elected #[...]
#Senator #[...]

Class PC

...

...
 [table-lookup]]

Tutorial.book : Chap7.frm 298 Sun Sep 8 16:44:46 1996

298 Open Implementations and Metaobject Protocols

The only issue left now is how to call residuals quickly.

Remaining Issue: Calling Residuals
Standard Techniques Apply

• Calling a single residual—inlining

• Calling a residual out of a table—some sort of call/
return

Or, blend the two using incremental specialization

Tutorial.book : Chap7.frm 299 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 299

The process of calling residuals depends on how implementations repre-
sent them. One, cheap, way is to package them as functions. This way the
calling mechanism is obvious. But each slot access then costs a full function
call. Since the implementation can know and check various aspects of
residuals, the full machinery of function calls, with its assorted error check-
ing, is not needed.

One alternative is therefore the use of light-weight function calls. Or resid-
uals can be passed around not as binary code but in symbolic form, with
the implementation performing inlining and incremental compilations.

Packaging and Calling Residuals

Form of Residual Overhead at Runtime

Procedure Full function call

Code vector Fast function call

Symbolic code vector Inlinable at link time (or later,
using Self-like techniques)

Tutorial.book : Chap7.frm 300 Sun Sep 8 16:44:46 1996

300 Open Implementations and Metaobject Protocols

In summary, MOP designers had made a mistake with the slot access pro-
tocol. Instead of requiring implementations to call @slotRef , they should
have done something a bit more sophisticated. So they changed the proto-
col to allow programmers to help implementations be efficient, while still
maintaining the flexibility programmers need.

The concept of currying a protocol was introduced. It is a technique MOP
designers can use whenever they need to enable programmers to analyze
their operations, so that those actions that need to be performed only once
can be separated from the ones that need to run often. This can allow MOP
designers to provide flexibility for programmers, while not making the
implementors’ job impossible.

Review: What Was All of This about?

• Simple protocol places too much overhead in critical
runtime paths

• Look for what can be pre-computed—possibly adjust-
ing protocol

• Protocol currying or automatic partial evaluation tech-
niques

Tutorial.book : Chap7.frm 301 Sun Sep 8 16:44:46 1996

And I Want It All to Be Fast! 301

For implementors it is most convenient when as much as possible is
known early. The earlier a decision is made, the easier it is to implement it
efficiently. This is the force that has pushed traditional, static programming
languages. On the other hand, the dynamic and lazy slots examples
showed that sometimes, better decisions are possible if they are postponed.
In both of these cases the slot management strategy was not fixed at com-
pile time as it would in more static languages. For example, if TinyObjects
compiler writers had made an irreversible decision that each slot would
always occupy a fixed position in objects, overall efficiency would have
suffered in the example of Person objects. Those were much better served
by dynamic slots, a fact known much later than the design of the compiler.

Open implementations are about enabling late decisions when they are
appropriate, without compromising efficiency normally associated with
making those decisions early.

Shifting Operations in Time

Time

RunLoadCompileObj model
design

Compiler
 design

Easier to recover
overhead

More is known

Tutorial.book : Chap7.frm 302 Sun Sep 8 16:44:46 1996

302 Open Implementations and Metaobject Protocols

Tutorial.book : Chap8.frm 303 Sun Sep 8 16:44:46 1996

Chapter 8 Summary and
Directions

Tutorial.book : Chap8.frm 304 Sun Sep 8 16:44:46 1996

304 Open Implementations and Metaobject Protocols

We observed that there are many cases in which programmers want to use
a particular substrate and find that it is almost right. There might be some
missing features, or it might be inconvenient or inefficient to use for a par-
ticular case that happens to occur frequently in the particular application.
But basically, the substrate is right.

In those situations programmers often have to compromise, leading to
higher application expenses and inefficiencies.

The problem therefore is to avoid forcing programmers into compromising
around their use of substrates any more than absolutely necessary.

The Problem We Addressed

There are many cases where a system is “almost right” to
meet a user’s needs.

• Missing features

• Locally different behavior

• Inconvenient for some frequent action

• Too slow in particular cases

Tutorial.book : Chap8.frm 305 Sun Sep 8 16:44:46 1996

Summary and Directions 305

Our approach is to find a way to make substrates flexible enough that pro-
grammers can reach in and adjust selected parts of the substrate imple-
mentation, without having to involve the substrate designers or
implementors.

Another way of looking at this is that we are opting for making systems
smaller by including fewer features and considering fewer special cases,
deciding instead to make substrates extensible. This is in contrast to lan-
guages like Ada which are trying to be complete from the start.

It is a simple intuition, but…

Our Basic Premise

Address this dilemma by making systems flexible and
tailorable, which allows the programmers to adapt the
system to their needs (rather than the other way around).

Tutorial.book : Chap8.frm 306 Sun Sep 8 16:44:46 1996

306 Open Implementations and Metaobject Protocols

There are legitimate concerns about the approach of opening implementa-
tions. One is that open implementations are harder to design. This is true.
Another concern is that open implementations can lead to abuses. Our
answer to this is that proper protocol design can be used to control this
problem. Specialization rules and checkable result constraints for user-
defined extension methods were examples of this.

Another concern is that open implementations are harder to implement
efficiently. This is true. But we have shown that a variety of technologies,
such as manual partial evaluation techniques, are at this point powerful
enough for the challenges posed by open implementations.

Some Questions That Come Up

• Harder to design

• Leads to bad uses (unreadable code, and so on)

• Harder to implement efficiently

Yes, but…

Tutorial.book : Chap8.frm 307 Sun Sep 8 16:44:46 1996

Summary and Directions 307

In fact, we showed that the open implementation techniques presented
were borrowed from, or enriched by a variety of fields, most of which have
actively been researched over the years.

The question is whether the additional work of opening substrate imple-
mentations is worthwhile. The answer to this is in part economical. Con-
sider operating systems as an example type of substrate. There are only a
handful of commercially significant operating systems in circulation. This
compares to thousands of applications written on top of them. Any addi-
tional work invested in the operating systems to make application writing
easier yields a large payoff.

A Synthesis of Techniques
OOP
‘Protocols’ subclass
specialization,
localization of changes

Reflection
Effective access to
object system
internals

User-Centered Design
Ethnographic techniques.
Participatory design

Good SW Practice
Modularity, abstraction

Open
 Implementa-

tions

Compiler Technology
Constant folding,
Partial evaluation

Tutorial.book : Chap8.frm 308 Sun Sep 8 16:44:46 1996

308 Open Implementations and Metaobject Protocols

A key point is that success metrics must be user-based. The question is less
whether substrates are easier to build, but whether support for program-
mers writing applications on top of those substrates is improved.

These arguments are strengthened if we look at what happens when sub-
strate implementations are not opened up.

Success Metrics

• Reduced complexity of user’s code

• Reduced size of user’s code

• Increased reuse of system by user’s code

• Interoperability benefit

Tutorial.book : Chap8.frm 309 Sun Sep 8 16:44:46 1996

Summary and Directions 309

The truth is that if programmers really need to make something work, they
will find a way. If they cannot do it cleanly because their substrate imple-
mentation is closed, then they will code ‘hematoma’ atop their substrates,
bloating the application code and making it less portable. There are cases
where programmers add missing substrate features, and others where they
replace entire portions of the substrate to gain efficiency for their special
needs. This can be observed in the database industry, where operating sys-
tem functions are often duplicated in the database, because the OS versions
of that functionality are too general, and therefore too slow.

Our dynamic slots example made this clear as well: without the ability to
adjust TinyObjects to the special case of sparse object structure, program-
mers would have had to write their own little language on top of
TinyObjects, which provided a new data structure and then dealt with its
allocation, inheritance and so on. At a later time they probably would have
wanted sparse objects to be known to browsers and inspectors, which
would have required more code still. Ensuring efficient compilation would
have involved additional efforts. Code hematomas are not a problem to
create initially. It is the follow-on effort that is expensive.

From Black Boxes…

‘Expansion’ code

‘Hematomas’ on black boxes

Fixed interface
 (protocol)

User programs become
large and unwieldy as
hacks try to get around
deficiencies and
inefficiencies in the
system

Closed
Implementation

Tutorial.book : Chap8.frm 310 Sun Sep 8 16:44:46 1996

310 Open Implementations and Metaobject Protocols

The first step towards making these hematoma unnecessary was to enable
introspection. This involved the reification of selected components in the
TinyObjects system, providing introspective facilities for programs to use
and build on. This enabled programs to construct browsers, or to build
new functionality, such as tests for method applicability, or the compilation
of program statistics.

...To Reified Components...

Base-
 program
 interface

Meta-
 interface
 program

class Senator (...)
 (...);

 Senator
vote

Elected function @isGfApplicable...
 ... @gfMethods ...

Tutorial.book : Chap8.frm 311 Sun Sep 8 16:44:46 1996

Summary and Directions 311

Then we added an effective interface to these reified components. This
interface allowed programs to effect operations at runtime which restric-
tive base-level syntax prevented them from executing before. We called
this explicit invocation, and one example was the creation of objects from
classes known only at runtime.

This ability was later enriched by the additional capability of injecting state
and behavior into TinyObjects implementations, as exemplified by classes
that automatically select efficient subclasses to instantiate when program-
mers provided an expected usage profile for the object to be created.

The use of object-oriented programming allowed us to introduce an impor-
tant measure of scope control, which limits how far the effect of a modifica-
tion can be seen. Programmers could, for instance, control which classes
retained information about their author, and which did not. More impor-
tantly, the classes that did not need authorship information to be retained
did not have to pay the price for this capability.

Object-oriented programming also allowed programs operating with a
modified object system implementation to co-exist with other programs
that used the default implementation. We called this interoperability.

...And an Effective Interface to Them

class @CountedClass...;

method @make(@CountedClass
 ...}

 Order

class Order (...) (...)
 @CountedClass();

new Order() --> #<order 1>

@Class

@CountedClass

@make

@make

#<order 1>

Tutorial.book : Chap8.frm 312 Sun Sep 8 16:44:46 1996

312 Open Implementations and Metaobject Protocols

All these steps together finally gave us an open implementation of
TinyObjects, with a base level interface that programs are written to, and a
meta level interface for adjusting selected parts of the TinyObjects imple-
mentation.

This separation of concerns allows programmers to control the added com-
plexity of implementation tailorability: it allows for a different working
style, where the substrate is adjusted first, so that applications can then be
written more easily. We showed how programmers can first write sample
code in their “dream object system,” which is then implemented by a sepa-
rate process of writing simple meta level programs.

We showed also that the design of metaobject protocols is an iterative pro-
cess, fed by programmers attempting to use the evolving MOP to solve
their problems.

In the chapter on performance, we showed that implementations can be
efficient in the presence of a MOP. A key technique in this context was the
currying of protocols, which allowed substrates to avoid unnecessarily
repeating computations during time-critical phases at runtime.

Resulting in Open Implementations

Simple meta-programs tailor the base interface to meet
special needs, keeping base programs understandable

 Senator
vote

Elected

Base-level
 interface

Meta-level
 interface

Tutorial.book : Chap8.frm 313 Sun Sep 8 16:44:46 1996

Summary and Directions 313

The purpose of this book is to interest the reader in building their own sub-
strates as open implementations. Here are a few closing questions that may
prompt thoughts in this direction. The last question in particular, points
away from object systems. The technology we presented for object systems
is applicable to other substrates, and research in this direction is ongoing.

Flexibility is an issue for users of databases, operating systems, or distrib-
uted environments much the same as for users of object systems. This book
provides a framework that can be used to examine application require-
ments and open implementation opportunities for these other systems as
well.

To Think about

• Adding a method dispatch MOP to TinyObjects

• MOPifying your favorite language. How much smaller
would C++ be? Ada?

• Which programs have you written that would have been
simpler if your language had a MOP?

• Do your users want more flexibility in the system you
are building?

Tutorial.book : Chap8.frm 314 Sun Sep 8 16:44:46 1996

314 Open Implementations and Metaobject Protocols

Index Entries - no page references (see)

<$nopage>Class precedence list:accessing,<Emphasis> See<IndexCode>
@classCPL;
<$nopage>Inheritance, multiple: <Emphasis>See<Default Para Font>
Multiple inheritance;
<$nopage>Multiple inheritance: <Emphasis>See also<Default Para Font>
Class precedence list;
<$nopage>Reification:<Emphasis>See also<Default Para Font> Metaob-
ject;
<$nopage>CPL, <Emphasis>See<Default Para Font> Class precedence list;
<$nopage>Methodology.<Emphasis> See<Default Para Font> Design
cycle;
<$nopage>Polymorphism:<Emphasis> See<Default Para Font> Class pre-
cedence list;
<$nopage>Polymorphism:<Emphasis> See<Default Para Font> Multiple
inheritance;
<$nopage>Protocol<Emphasis> See<Default Para Font> Metaobject proto-
col
<$nopage>Reflection:<Empahsis>See also<Default Para Font> Reification
<$nopage>Class:reification:<Emphasis>See also<Default Para Font>
Metaobject
<$nopage>Generic function:reification:<Emphasis>See also<Default Para
Font> Metaobject
<$nopage>Method:reification:<Emphasis>See also<Default Para Font>
Metaobject
<$nopage>Multiple:<Emphasis>See<Default Para Font> Multiple inherit-
ance
<$nopage>Metaclass:<Emphasis>See also<Default Para Font> Metaobject
<$nopage>Acessing:<Emphasis>See<IndexCode> @classCPL

Tutorial.book : TutorialLOP.doc 315 Sun Sep 8 16:44:46 1996

315

Introduction
Executive Summary...2
Topics Addressed (1/4) ..4
Topics Addressed (2/4) ..5
Topics Addressed (3/4) ..6
Topics Addressed (4/4) ..7
Roles and Work Products...8
Increased Programmer Access...9
Getting Down to Work...10
Programmer Questions (1/4)..11
Programmer Questions (2/4)..12
Programmer Questions (3/4)..13
Programmer Questions (4/4)..14
Client Programmer Frustration ..15
The Designer’s Dilemma ...16
The Implementors’ Dilemma...17
A Long-Standing Tension..18
Open Implementations...19
Three Kinds of Opening...20
Metaobject Protocols ...21

List of Slides in Presentation Order

Tutorial.book : TutorialLOP.doc 316 Sun Sep 8 16:44:46 1996

316 Open Implementations and Metaobject Protocols

Some Related Work (1/2) ..22
Some Related Work (2/2) ..23
Roadmap ..24

TinyObjects: A Simple Object System
TinyObjects..29
Differences from C++..30
Differences from Smalltalk..31
Differences from CLOS...32
Differences from Objective-C..33
Defining Classes ..34
Making Objects ..35
Defining Generic Functions...36
Defining Methods ..37
Calling a Generic Function ..38
Polymorphism ..39
Accessing Slots ..40
Initialization of Objects..41
Encapsulation...42
Using Readers and Writers ..43
The Complete Program (1/5) ...44
The Complete Program (2/5) ...45
The Complete Program (3/5) ...46
The Complete Program (4/5) ...47
The Complete Program (5/5) ...48
Making Senators ..49
Method Dispatch (1/4) ...50
Method Dispatch (2/4) ...51
Method Dispatch (3/4) ...52
Method Dispatch (4/4) ...53

But I Wish I Knew…
The Current Situation...56
Flow of the Following Material ...57
I Wish...58
What Is This Programmer Asking For? ...59
Inherent Program Representation...60
Inherent Program Representation...62
Representation of a Class (1/3) ..63
Representation of a Class (2/3) ..64
Representation of a Class (3/3) ..65
Strategy ..66

Tutorial.book : TutorialLOP.doc 317 Sun Sep 8 16:44:46 1996

317

Access to Data about Classes...67
Finding All Subclasses (1/3) ..69
Finding All Subclasses (2/3) ..70
Finding All Subclasses (3/3) ..71
Summary of List Operations (1/2) ...72
Summary of List Operations (2/2) ...73
How Much Multiple Inheritance?..74
Slot Genealogy (1/2) ..75
Slot Genealogy (2/2) ..76
Anything Else to Try?..77
Recap..78
I Want to Know…..79
Representation of GFs..80
Representation of Methods ..81
The Tie Back to Classes...82
Repeat the Strategy ..83
Readers for GF and Method Info ...84
Is a Given GF Applicable?...85
GF Applicability ..86
Method Genealogy...87
Anything Else to Try?..88
Implementation Strategy..89
Encapsulation (1/2) ..90
One Possible Implementation (2/2)..91
Desired Implementor Freedom ..92
Rules for Using Readers ..93
The Design Cycle...94
Reification of Internal State ...95
Two Kinds of Program...96
Base and Meta..97
The Use of “@”..98
Terminology...99
Introspective Protocol ..101
Summary ..102

But I Wish I Could Get At…
Going to the Zoo… ..110
A Species Tree ...111
Species Are Represented as Classes ..112
I’d Like To… ...113
Finding Relevant Functionality..114
New Interface to Object Creation ..115

Tutorial.book : TutorialLOP.doc 318 Sun Sep 8 16:44:46 1996

318 Open Implementations and Metaobject Protocols

Making Objects ..117
Making Those Animals..118
How About New Species of Animals? ..119
Analysis..120
Class Definition Revisited ...121
New Interface to Class Definition..123
Programmers Creating Class MOs...124
Making Custom Classes (1/2) ..125
Documenting Class Making...126
Making Custom Classes (2/2) ..127
GFs and Methods Are Analogous..128
GF and Method Creation..129
Explicitly Invoking Operations..130
Other Uses of Explicit Invocation..131
Criteria for MOP Design..132
Suspend Efficiency Concerns...133
Robustness ...134
Performance ...135
Anything Else to Try?..136
Summary ..137

But I Wish It Had This Extra Feature…
I Am a Class Library Contractor…..141
Analysis..142
Programmer Injecting State ...143
A First Attempt ..144
Searching for a More Subtle Touch ...145
Meta-level Subclassing ..146
 Defining an Authored Class..147
How to Use the UI for Class Making...148
Initialization of Author Information ..149
Access to Author Information..150
Supporting Extension...151
Intercession ..152
Interoperability...153
Separation of Concerns ..154
Anything Else to Try?..155
Automatic Subclass Selection..156
What Is Being Asked?..157
Analysis..158
An Interface to This Functionality ...159
Fitting It into the Meta-level Model...160

Tutorial.book : TutorialLOP.doc 319 Sun Sep 8 16:44:46 1996

319

Selecting the Subclasses...161
Documenting This Protocol ...162
Started with Reified Object Creation...163
Turned @new into a GF...164
Localized Extension...165
Review of This Extension (1/2) ...166
Review of This Extension (2/2) ...167
Programmer’s Work Cycle ..168
MOP Design...169
MOP Designer’s Review to Date...170
Rules Mediate ..171
Rules for Introspection...172
Rules for Intercession (1/2)..173
Rules for Intercession (2/2)..174
Changing the Inheritance Model..175
Differences in Inheritance Models...176
Impact of Inheritance Model..177
Inheritance Behavior Control...178
Where is the CPL? ...179
Remember Class Creation (1/2)...180
Remember Class Creation (2/2)...181
Looking for CPL Construction Site ...182
Details of Class Initialization...183
Graphical View of Class Creation ...184
Programmer Control over the CPL ..185
Access to CPL Computation (1/2) ...186
Access to CPL Computation (2/2) ...187
How It All Works...188
Central Questions to Address...189
Coherence...190
Robustness ...191
Performance ...192
Just Good Software Engineering..193
The Stance..194
Here’s a Punch in the Nose..195
Here’s a Knockout Punch ..196
Review: The Terrain Covered So Far ..197
Review: How and Why..198
The Design Process..199
Anything Else to Try?..200
Summary ..201

Tutorial.book : TutorialLOP.doc 320 Sun Sep 8 16:44:46 1996

320 Open Implementations and Metaobject Protocols

But I Could Make It Run Better for My Application…
Intercession in Slot Access ..204
The Programmer Would Like to Write ..205
How to Make This Work?..206
Extra slotRef Behavior...207
Extra Information in the Class ...208
Changing Slot Access ..209
Slot Access Operation Not Reified ..210
Reifying Slot Access..211
Making @slotRef Extensible (1/2) ..212
Making @slotRef Extensible (2/2) ..213
Implementing This New Protocol ..214
Slot Access Intercession...215
Extending @slotRef (1/2) ..216
Extending @slotRef (2/2) ..217
I Need More Than Slots…...218
This Programmer Wants to Write ..219
What Is to Be Done? ..220
Class Is a Map to Objects (1/2)..221
Class Is a Map to Objects (2/2)..222
Keeping Information about Attributes ...223
Remember Class Initialization...224
Imitation…...225
Inheritance of Attributes ..226
Non-Attributes Class Inheritance...227
What Next? ..228
The Maps in More Detail ...229
Slot Maps—Official Documentation ...230
Slot and Location Accessors ..231
Reserving Locations for Slots ..232
New Slot Access Method...233
Protocol for Object Locations..234
Maps for Attributes ..235
Obtaining Locations for the Attributes ..236
Accessing Attributes ..237
Anything Else to Try?..238
Using MOPs to Optimize Applications ...239
It’s Such a Waste..240
The Problem (1/2) ..241
The Problem (2/2) ..242
Allowing Space Optimization..243
Which Implementation Is Needed?..244

Tutorial.book : TutorialLOP.doc 321 Sun Sep 8 16:44:46 1996

321

Using Dynamic Slots ...245
What Are the Issues?..246
Extension Design… ...247
Classes with Dynamic Slots...248
Storage Layout for Person Objects ..249
How to Prevent Storage Allocation ...250
Storage Map for Dynamic Classes...251
Where Objects Store Dynamic Values...252
Building the Storage Map ..253
Marking the Dynamic Slots ...254
Completing the Storage Map (1/2)...255
Completing the Storage Map (2/2)...256
Dynamic Slot Testing...257
Accessing Dynamic Slots...258
Allowing User-Defined Slot Maps ..259
Intercession Takes Us Further..260
What about Our Rules?..261
Rules for Intercession...262
Intercession is Software Engineering...263
Protocols Define Replaceable Units ..264
Intercession Rules ..265
Summary ..266

And I Want It All to Be Fast!
Performance ...268
Method Dispatch..269
Why Does This Approach Work?..270
Action Times..271
But What about @computeCpl? ..272
With @computeCpl. ..273
Traditional Optimized Slot Access ..274
Fast Slot Access—Traditional Case...275
We Committed to Huge Overheads!..276
HUGE Overheads ..277
Case in Point: ...278
Too Much of Slot Access at Runtime ..279
A Closer Look at Slot Access ..280
What Can Be Precomputed? ..281
Manually Pre-Computing Slot Access...282
Optimizing User-Defined Slot Access...283
Two Strategies for Pre-Computation ...284
A Change of Protocol...285

Tutorial.book : TutorialLOP.doc 322 Sun Sep 8 16:44:46 1996

322 Open Implementations and Metaobject Protocols

Example ...286
A Curried Slot Access Protocol ...287
Programmer Explicitly Precomputes ...288
The Timeline View of the Protocol..289
Dynamic Slots Need to Be Reworked..290
Dynamic Slots Under the Old Protocol..291
Dynamic Slots For the New Protocol ..292
First Attempt Is Doing This ...293
It Could Do This ..294
Dynamic Slots for the New Protocol ...295
Dynamic Slots for the New Protocol ...296
We Are Almost There..297
Remaining Issue: Calling Residuals ..298
Packaging and Calling Residuals...299
Review: What Was All of This about? ..300
Shifting Operations in Time...301

Summary and Directions
The Problem We Addressed ..304
Our Basic Premise..305
Some Questions That Come Up...306
A Synthesis of Techniques...307
Success Metrics..308
From Black Boxes…..309
...To Reified Components... ...310
...And an Effective Interface to Them..311
Resulting in Open Implementations...312
To Think about...313

List of Slides in Presentation Order

Tutorial.book : TutorialIX.doc 323 Sun Sep 8 16:44:46 1996

A
Animal , 111–112

B
Base interface,96–97
Bear , 111–112
bearGrowl , 129
Bearunny , 111–112
Bearunnyraffe , 119–120
Black-box

abstraction,56, 61
icon, 97
partial opening,61, ??–97

Bunny , 111–112

C
C++

comparison with TinyObjects,30
Class

accessor functions,67
adding information to,141–150
creation through explicit invocation,126
customization,119–127, 141–151

definition, 34, 44, 121–126
initialization, 178–179
linkage with methods, generic functions and

subclasses,59, 82
metaobjects,67, 99
reification, 59–78

See also Metaobject

TinyObjects in,34
visual representation conventions,70

Class precedence list,50, 175–188
accessing, See @classCPL
participation in construction of,186–187

CLOS
comparison with TinyObjects,32

Cloud icon, 61
Coherence

intercession of,190
violation, example,195–196

concerns , 34, 42
CPL,See Class precedence list

D
Design cycle,57, 168–169, 199–200

Index

Tutorial.book : TutorialIX.doc 324 Sun Sep 8 16:44:46 1996

324 Open Implementations and Metaobject Protocols

E
Elected , 44
Encapsulation,42
Examples

automatic subclass selection,156–162
browsers,58–76
changing inheritance model,170–183
class creation, specifications known at

runtime, 119–127
generic function applicability test,79–87
object creation, class known at runtime,110–

118
TinyObjects basics,44–48
variables on classes,141–151

Explicit invocation
robustness in,134

explicit invocation,130
extend operator,73

F
first operator,72

G
Generic function

accessor functions,84
addition of methods,128
applicability, 47
creation through explicit invocation,128
customization,128
definition, 36
information maintained for,80
invocation, 38
linkage with classes and methods,59, 82
metaobjects,84, 99
reification, 80–84

See also Metaobject

TinyObjects in,36
Giraffe , 111

H
high-rise restrictions , 53
hot tub quota , 49, 52

I
Icons

cloud, 61
mop, 69

scroll, 67
Inheritance, multiple

See Multiple inheritance
Initargs

defintion, 35
Intercession,152

coherence in,190
robustness in,191

Interoperability,153
Introspection,101
isIn operator,72

L
list operator,72
lookup operator,72

M
makeAnimals , 113, 118
makeNoise , 129
margin , 44
Meta interface,96–97
Metaclass,98

initialization, 151
See also Metaobject
specialization,151
subclassing,146, 151

Metaobject,67, 84, 99
adding information to,141–150
creation,126, 128

Metaobject protocol,98
designer,100

Method
accessor functions,84
addition to generic funciton,128
creation through explicit invocation,128
definition, 37
genealogy, finding,87
information maintained for,81
invocation, 38, 39, 51
linkage with classes and generic

functions, 59, 82
metaobjects,84
reification, 81–84

See also Metaobject

TinyObjects in,37
Methodology. See Design cycle
Mop icon, 69

Tutorial.book : TutorialIX.doc 325 Sun Sep 8 16:44:46 1996

325

Multiple
See Multiple inheritance

Multiple inheritance
See also Class precedence list
finding in program,74
specification,34
TinyObjects in,34, 44

N
new operator,35

O
Object

creation,117
initialization, 41, 46

Objective-C
comparison with TinyObjects,33

ozone hole , 49

P
Phone , 142, 147–148
Politician , 44
Polymorphism,39, 44–48

 See Class precedence list
 See Multiple inheritance

prop wash shortage , 49
Protocol See Metaobject protocol

R
Reflection,95

See also Reification
Reification, 95

class,58–78, 99
method,81–84, 99
object creation,115–117
See also Metaobject

ReplicatedHashSet , 159
Robustness

explicit invocation of,134
intercession of,191

S
Scroll icon, 67
Senator , 44
Separation of Concerns,154
Set , 167
Slot

accessing,40

definition, 34
genealogy, finding,75–76
reification, 58–78

Smalltalk
comparison with TinyObjects,31

state , 44
Subclass

definition, 34
finding, 69–73
linkage with superclasses,59
reification, 58–78

suntan lotion requirement , 51
Superclass

definition, 34

T
TinyObjects

Class definition,34, 44
CLOS, comparison,32
Encapsulation,42
extend operator,70
first operator,72
Generic function definition,36
isIn operator,72
list operator,72
lookup operator,72
Method definition,37
Object creation,35
Object initialization,41
Objective-C, comparison,33
Slot access,40
Smalltalk, comparison,31
Union operator,73
C++, comparison,30

U
Union operator,73

V
vote , 36–37, 48

Symbols
Sign convention,63
@ Sign convention,67, 98
@addMethod, 128
@allClasses , 71
@allSubs , 70, 71

Tutorial.book : TutorialIX.doc 326 Sun Sep 8 16:44:46 1996

326 Open Implementations and Metaobject Protocols

@applyGf , 129
@AuthoredClass , 145, 147
@classAuthor , 142, 150
@classDirectMethods , 84
@classDirectSlots , 67
@classDirectSubs , 67
@classDirectSupers , 67
@className, 67
@classOf , 67
@classSlots , 67
@computeCpl , 183–188
@findClass , 67
@findClasses , 125
@Gf, 128
@gfArglist , 84
@gfMethods , 84
@gfName, 84
@isGfApplicable , 86
@Method, 128
@methodFunction , 84
@methodGenealogy , 87
@methodGf, 84
@methodSpecializer , 84
@new, 115–117
@newClass, 120, 125
@slotGenealogy , 76
@slotOrigin , 75
@SubcSelClass , 159

