
Portable Utilities for Common Lisp
User Guide & Implementation Notes

Mark Kantrowitz
May 1991

CMU-CS-91-143

School of Computer Science
Cargnegie Mellon University
Pittsburgh, PA 15213-3890

mkant+@cs.cmu.edu

Abstract

One of the most frequent complaints in the Lisp community is the lack of availability of
programming tools. This document describes portable implementations of six tools for the
development and maintenance of Common Lisp programs: XREF, a Lisp code cross referencer;
METERING, a timing and consing code profiler; DEFSYSTEM, a "make" for Lisp;
LOGICAL-PATHNAMES, portable pathnames for Lisp; SOURCE-COMPARE, a "diff" for Lisp; and
USER-MANUAL, a program which extracts documentation from Lisp programs. All six tools are
publicly available via anonymous ftp.
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1. Introduction

This document describes six portable systems tools which aid programmers in the development
and maintenance of Common Lisp programs.

1.1. Why Portable Utilities?

One of the most frequent complaints in the Lisp community is the lack of general availability of
tools for system development and management. While some tools are available in particular Lisp
environments (most notably on dedicated Lisp Machines, such as Symbolics and Xerox), none
are available in every version of Lisp, and those that are available are often incompatible.

For example, many Lisps provide some sort of system definition tool, commonly called
‘defsystem’, but most such tools are incompatible.  Some Lisps use simple modules [6, pp.
188-192], perhaps augmented with search lists, while others use a more complicated procedural
system-construction tool [3, 4]. Even those with similar functionality have a different definition
syntax. Since the tools are often proprietary, one is constrained either to using a particular Lisp
or to writing separate system definitions for each and every tool. With today’s heterogeneous
programming environments, programmers often use different Lisps on different machines, or
even on the same machine, so the former is not a viable option and the latter is a major headache
for the program maintainer.

A primary goal of this manual and associated software is to address this issue by providing
portable implementations of the most useful utilities. All of the utilities are implemented in

1Common Lisp and any Lisp implementation-dependent changes are clearly noted, with
reasonable defaults if the changes not supplied. Porting the tools to other Lisps is therefore quite
painless. Since the tools are publicly available for no fee, one may simply use the tools in
whichever Lisps one desires.

1.2. Design Philosophy

Although system development tools can greatly improve programmer productivity, not every
programmer has the time and opportunity to write such tools from scratch. On the other hand,
given source code for a tool that is close to what they want, most programmers can quickly and
easily modify it to meet their needs. Likewise, the programmer who encounters a bug in the tool
can fix it himself.

If the incremental enhancements and changes made by the users are then propagated back to the

1The utilities have all been tested in Franz Allegro Common Lisp (3.0.1 Decstation 3100), Macintosh Allegro
Common Lisp (1.3.2), and CMU Common Lisp (old and new compilers). In addition, many of the utilities have
been tested in other Lisps, including Lucid Common Lisp (2.1 Vax, 3.0, and 4.0), Symbolics Common Lisp (7.2 and
8.0), Ibuki Common Lisp, and VAXLisp.
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original source, the improvements can snowball, yielding a better program than any individual
programmer or team of programmers could have written. This is especially true of programs with
a large community of users, such as programming tools.  The key is to get the ball rolling.

Thus our philosophy in designing and implementing these utilities has been to concentrate on
basic functionality, and rely on the users to add the bells and whistles they want. To provide a
good starting point for new features, the program must be written in as generic and portable a
manner as possible. Accordingly, we wrote these utilities in "pure" Common Lisp, segregating
any implementation-dependent functions, and focused on providing a clean and efficient
implementation of the core of the programs.

Even though most of the tools have been available for much less than a year, they have already
benefited from this approach. Users have helped port the utilities to other Lisps (often by
providing just the implementation-dependent functions), fixed bugs, added features, and made
suggestions for other improvements. The tools have become quite popular, and are currently
being used by programmers at over 100 sites that we know of.

1.3. Overview

In the following chapters we describe each of the following utilities in detail:

XREF A portable cross referencing tool for determining callers of functions and variables in
Lisp programs.  Useful for mapping out the structure of a program. Similar to the
Symbolics Who-Calls database [3] [8, pp. 183-185] and the Xerox Masterscope program
[2]. Includes an interface to Joe Bates’ PostScript DAG grapher for drawing call graphs.

METERING
A portable code profiling tool, for gathering timing and consing statistics while a
program is running. Monitors the use of functions and macros, calculating the number of
calls, CPU time, and storage use. Inclusive and exclusive function call statistics. The
METERING system is based on the MONITOR program written by Chris McConnell and the
PROFILE program written by Skef Wholey and Rob MacLachlan, with several extensions.

DEFSYSTEM
A portable system definition facility (a "make" for Lisp), similar to the Symbolics system
construction tool [3] [4]. Compiles and loads files according to a user-defined file-
dependency graph, while trying to minimize extraneous compilations and loads. Includes
an interface to LOGICAL-PATHNAMES. XREF includes a tool to assist in building a system
definition for a set of files.

LOGICAL-PATHNAMES
A portable implementation of the X3J13 June 1989 specification for logical pathnames,
as documented in [7, section 23.1.5]. Useful for portable pathname reference, cross-host
access, and pathname aliasing.

SOURCE-COMPARE
A portable tool for finding the differences between source files (a "diff" for Lisp). While
it may be used to compare arbitrary text files, it has several features specialized for Lisp,
such as the ability to ignore Lisp comments. It uses a greedy algorithm for longest
common substring that may not necessarily find the longest common substring, but which
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runs in average case linear time and works well in practice.

USER-MANUAL
A portable program for extracting documentation from Lisp source code. Helps create
user guides and program documentation.

This manual describes only the programming utilities. The collection also includes other useful
Lisp programs, such as a regular-expression style matcher and FrameWork, a generic frame-
based knowledge representation system, as well as a variety of text files of interest to Lisp
programmers.

Within each chapter we first give an overview of the basic features of the utility, including basic
commands and variables. Next, we describe how to load the software, with a particular emphasis
on what implementation-dependent changes may be required. Then come usage notes, if any.
After that follows a few examples of how to use the programs and sample output. Finally, we
conclude each chapter with a discussion of the implementation, which should help users modify
and extend the software.

1.4. Obtaining the Utilities

The utilities are available by anonymous ftp from CMU:

• ftp to a.gp.cs.cmu.edu [128.2.242.7] or any other CMU CS machine.

• The directory /afs/cs.cmu.edu/user/mkant/Public/Lisp-Utilities/
contains the files.

• cd to this directory in one fell swoop. Do not try to cd or ls any intermediate
directories, since the CMU security mechanisms prevent access to other directories
from an anonymous ftp.

• Use ls to see what files are available. For users accessing the directory via an
anonymous ftp mail server, the file README contains a current listing and
description of the files in the directory. The file UPDATES describes recent updates
to the released versions of the software in the directory. The file COPYING describes
the general license agreement and lack of warranty.

2Of course, if your site runs the Andrew File System and you have afs access, you can just cd to
the directory and copy the files directly.

The following is an example of using ftp to retrieve the software:

% ftp a.gp.cs.cmu.edu
Connected to A.GP.CS.CMU.EDU.

2Currently Boston University, Carnegie Mellon University, Chalmers University of Technology, Dartmouth, HP
Cupertino, Idaho National Engineering Lab, MIT, Mt. Xinu, Naval Research Lab, NIH, Open Software Foundation,
Pittsburgh Supercomputing Center, Rensselaer Polytechnic Institute, Stanford, Superconducting Supercollider Lab,
Transarc, Unisys, University of Arizona, University of Michigan, University of Notre Dame, University of
Pittsburgh, and University of Southern California/ISI.
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220 A.GP.CS.CMU.EDU FTP server (Version 4.105 of 10-Jul-90 12:07) ready.
Name (a.gp.cs.cmu.edu:mkant): anonymous
331 Guest login ok, send ident as password.
Password:
230 Filenames can not have ’/..’ in them.
ftp> cd /afs/cs.cmu.edu/user/mkant/Public/Lisp-Utilities
250 Directory path set to /afs/cs.cmu.edu/user/mkant/Public/Lisp-Utilities.
ftp> ls
200 PORT command successful.
150 Opening data connection for ls (128.2.220.10,3107).
COPYING
README
UPDATES
c-lisp-interfaces.text
cl-x-lisp-interfaces.text
defsystem.lisp

[...rest of listing deleted...]
226 Transfer complete.
430 bytes received in 0.23 seconds (1.8 Kbytes/s)

The following table lists the relevant files, their length in lines of Lisp (excluding comments),
and their size in bytes:

File lines bytes

defsystem.lisp 1391 88k

framework.lisp 1666 125k

logical-pathnames.lisp 1511 77k

matcher.lisp 113 15k

metering.lisp 714 45k

psgraph.lisp 457 18k

psgraph.doc 5k

source-compare.lisp 640 54k

user-manual.lisp 500 35k

xref.lisp 2109 125k

xref-patterns-for-macl.lisp 76 3k

xref-test.lisp 92 2k

Total 9269 592k

There is a mailing list for notification of major updates, bug-fixes and additions to the Lisp
Utilities collection. To be added to the mailing list, send email with your name, email address,
and affiliation to CL-Utilities-Request@cs.cmu.edu.

Bug reports, comments, questions and suggestions should be sent to mkant+@cs.cmu.edu.
Also, please send us copies of any changes or improvements you make to the software, so that
we may merge them into the originals.
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2. XREF: Cross Referencer

The XREF or List Callers system is a portable Common Lisp cross referencing tool. It grovels
over a set of files and compiles a database of the locations of all references to each symbol used
in the files. It is similar to the Symbolics Who-Calls and Xerox Masterscope facilities [2] [3] [8].

When you change a function or variable definition, it can be useful to know its callers, in order
to update each of them to match the new definition. Similarly, a graphical display of the structure
of a program can help make undocumented code more understandable. This code analyzer
implements both capabilities.

The database compiled by XREF is suitable for viewing by a graphical browser. Since the call
graph is not necessarily a DAG, and many graphical browsers assume a DAG, XREF includes
code to convert the graph to a tree-like representation. XREF also includes a simple text-indenting
outliner for displaying call graphs on ascii terminals, as well as an interface to Joe Bates’
PSGRAPH PostScript DAG grapher.

2.1. Overview

XREF analyzes a user’s program, determining which functions call a given function and the
locations where variables are bound/assigned and used. The user may retrieve this information
for a single symbol, or display the call graph of portions of the program (up to and including the
entire program). This helps the programmer debug and document the program’s structure.

XREF is primarily intended for analyzing large programs, for which it is difficult, if not
impossible, for the programmer to grasp the structure of the whole program. Nothing precludes
using XREF for smaller programs, however, where it can be useful for inspecting the
relationships between pieces of the program and for documenting the program.

3Two aspects of the Lisp programming language greatly simplify the analysis of Lisp programs:

• The syntax of Lisp programs and data are the same. Successive definitions from a
file may be read in as list structure.

• The basic syntax of Lisp is uniform. A Lisp program consists of a set of nested
forms, where each form is a list whose car is a tag (e.g., function name) that
specifies the structure of the rest of the form.

4Thus Lisp programs, when read as data, can be thought of as parse trees. Given a grammar of
syntax patterns for the language, XREF recursively descends the parse tree for a given definition,
computing a set of relations that hold for the definition at each node in the tree. For example, a

3Of course, macros and eval complicate the analysis of Lisp programs.

4While XREF currently works only for programs written in Lisp, it could be extended to other programming
languages by writing a function to generate parse trees for definitions in that language, and a core set of patterns for
the language’s syntax.
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typical relation is that the functions in the body of a definition are called by the defined function.
The relations are stored in a database for later inspection by the user.

XREF may operate in either a static or a dynamic mode. In the static mode XREF does a static
syntactic analysis of the program, but does not detect references due to the expansion of a macro
definition. In the dynamic mode XREF will expand any macros for which it does not have
predefined patterns.

The dynamic analysis of a program requires XREF to have some knowledge about the semantics
of the program. For example, a macro could call functions defined by the program to do the
expansion. This entails either modifying the compiler to record the relationships (e.g., Symbolics
Who-Calls Database) or doing a walk of loaded code and macroexpanding as needed (PCL code
walker). Since the former is not portable, XREF implements the latter.

In order for XREF to expand macros the code used by the macros must be loaded and in working
order. Also, XREF’s parameters probably should be set so that it processes forms in their proper
packages. If the code is not loaded, XREF will default to operating in the static analysis mode.
When XREF operates in dynamic mode it doesn’t need any special knowledge about the syntax of
macros (excluding the 24 special forms of Lisp). On the other hand, to operate properly in static
analysis mode XREF must have patterns defined for all the standard macros of Common Lisp.
Thus, even though most Lisps implement dolist as a macro, XREF will not call
macroexpand-1 on a form whose car is dolist because it will use the predefined template for
dolist instead.

If macro expansion is disabled, the default rules for handling macro references may not be
sufficient for some user-defined macros, because macros allow a variety of non-standard
syntactic extensions to the language. In this case, the user may specify additional templates in a
manner similar to that in which the core Lisp grammar was specified.

2.2. Loading XREF

XREF runs best when compiled and will issue a warning if the source is loaded instead. It also
loads much faster when compiled. To use, load the compiled version of xref.lisp and any
additional patterns, such as xref-patterns-for-macl.lisp. XREF is loaded into the
"XREF" package, so prefix all the following functions and variables with an "XREF:".

2.3. Using XREF

This section describes all of the basic XREF commands and the variables which control their
behavior. XREF includes functions for creating the reference database, saving the database to file,
restoring a saved database, and retrieving information from the database in a variety of formats.
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2.3.1. Creating, Saving and Restoring the Reference Database

xref-files and xref-file are the main functions for creating the reference database. For
very large systems of files it can take several minutes to process the code, so writing the database
to file may save some time. write-callers-database-to-file may be used to save the
database to a file, which may then be loaded using load to restore the database.

xref-files (&rest files) [Function]

Grovels over the Lisp code located in the specified source files files, using
xref-file.

xref-file (filename &optional (clear-tables t) [Function]
(verbose *xref-verbose*))

Cross references the function and variable calls in filename by walking over the source
code located in the file. Defaults type of filename to "lisp". If clear-tables is t (the
default), it clears the callers database before processing the file. Specify clear-tables as
nil to append to the database. If verbose is t (the default), prints out the name of the
file, one progress dot for each form processed, and the total number of forms.

write-callers-database-to-file (filename) [Function]

Saves the contents of the current callers database to a file. This file can be loaded to
restore the previous contents of the database.

2.3.2. Examining Symbol References

The following functions display information about the uses of the specified symbol as a function
or variable.

list-callers (symbol) [Function]

Lists all functions which call symbol as a function (function invocation).

list-readers (symbol) [Function]

Lists all functions which refer to symbol as a variable (variable reference).

list-setters (symbol) [Function]

Lists all functions which bind/set symbol as a variable (variable assignment).

list-users (symbol) [Function]

Lists all functions which use symbol as a variable or function.

who-calls (symbol &optional how) [Function]

Lists callers of symbol. how may be :function, :reader, :setter, or
:variable.

what-files-call (symbol) [Function]

Lists names of files that contain uses of symbol as a function, variable, or constant.

source-file (symbol) [Function]

Lists the names of files in which symbol is defined and/or used.
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list-callees (symbol) [Function]

Lists names of functions and variables called by symbol.

2.3.3. Viewing and Graphing the Reference Database

The following functions are useful for viewing the database and displaying it in a variety of
formats.

display-database (&optional (database :callers) [Function]
(types-to-ignore *types-to-ignore*))

Prints the name of each symbol and a list of all its callers. Specify database as
:callers (the default) to get function call references, as :file to the get files in
which the symbol is called, as :readers to get variable references, and as :setters
to get variable binding and assignments. Ignores functions of the types listed in
types-to-ignore.

print-caller-trees (&key (mode *default-graphing-mode*) [Function]
(types-to-ignore *types-to-ignore*) compact
root-nodes)

Prints the calling trees (which may actually be a full graph and not necessarily a DAG)
as indented text trees using print-indented-tree. mode is :call-graph for trees
where the children of a node are the functions called by the node, or :caller-graph
for trees where the children of a node are the functions the node calls. types-to-ignore
is a list of funcall types (as specified in the patterns) to ignore in printing out the
database. For example, ’(:lisp) would ignore all calls to Common Lisp functions.
compact is a flag to tell the program to try to compact the trees a bit by not printing
trees if they have already been seen. root-nodes is a list of root nodes of trees to
display. If root-nodes is nil, displays trees for all the root nodes in the database.

print-file-dependencies (&optional (database *callers-database*)) [Function]

Prints a list of file dependencies for the references listed in database. This function
may be useful for automatically computing file loading constraints for a system
definition tool such as defsystem.

The PSGRAPH program (psgraph.lisp) must be loaded before using psgraph-xref.

psgraph-xref (&key (mode *default-graphing-mode*) [Function]
(output-directory *postscript-output-directory*)
(types-to-ignore *types-to-ignore*) (compact t)
(shrink t) root-nodes)

Creates a postscript file for each call-graph in the database. If shrink is t, shrinks the
output to fit on a single page. If compact is t, will print the tree rooted at a given node
only once. mode may be :call-graph to display the call-graph, :caller-graph to
display the inverse. If root-nodes is nil, it tries to find all the root nodes in the
database (functions not called by other functions) and display those. Otherwise,
root-nodes should be a list of root nodes of the trees to be displayed.
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2.3.4. XREF Variables

The following variables control the default operation of XREF.

*xref-verbose* t [Variable]

When t, xref-file prints out the names of the files it looks at, progress dots, and the
number of forms read.

*types-to-ignore* (quote (:lisp :lisp2)) [Variable]

Default set of caller types (as specified in the patterns) to ignore in the database
handling functions. :lisp is CLtL 1st edition [6], :lisp2 is additional patterns from
CLtL 2nd edition [7].

*handle-package-forms* () [Variable]

When non-nil and xref-file encounters a package-setting form like in-package,
the form is evaluated to set the current package to the specified package. When done
with the file, xref-file resets the package to its original value. In some of the
displaying functions, when this variable is non-nil one may specify that all symbols
from a particular set of packages be ignored. This is only useful if the files use
different packages with conflicting names.

*handle-function-forms* t [Variable]

When t, xref-file tries to be smart about forms which occur in a function position,
such as lambdas and arbitrary Lisp forms.  If so, it recursively calls record-callers
with pattern ’form. If the form is a lambda, the name :unnamed-lambda is used in
the database.

*handle-macro-forms* t [Variable]

When t, if the file was loaded before being processed by XREF, and the car of a form is
a macro, it notes that the parent calls the macro, and then calls macroexpand-1 on
the form.

*default-graphing-mode* :call-graph [Variable]

Specifies whether we graph up or down. If :call-graph, the children of a node are
the functions it calls. If :caller-graph, the children of a node are the functions that
call it.

*indent-amount* 3 [Variable]

Number of spaces to indent successive levels in print-indented-tree.

2.4. An Example of Using XREF

In this section we give some examples of using XREF to analyze xref-test.lisp, a simple
nonsense program. The program is listed in Appendix I and tests several aspects of XREF.

Assuming XREF is already loaded, we must first analyze the forms in the file using xref-file:

<cl> (xref:xref-file "xref-test.lisp")
Cross-referencing file xref-test.lisp.
......
6 forms processed.
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If we wish to see which functions call frowz, we use the list-callers function:

<cl> (xref:list-callers ’frowz)
(BARF TOP-LEVEL)

The function print-caller-trees may be used to print the call graph using indentation to show
levels:

<cl> (xref:print-caller-trees)
Rooted calling trees:
TOP-LEVEL

FROB
FROB-ITEM

APPEND-FROBS
BARF

FROWZ
PROCESS-KEYS
SNARF-ITEM
PROCESS-KEY

SYMBOL-NAME-KEY
NODE-POSITION

FROWZ
PROCESS-KEYS
SNARF-ITEM
PROCESS-KEY

SYMBOL-NAME-KEY
NODE-POSITION

Note how the tree rooted at frowz is repeated, once for each place it occurs. We can eliminate
this duplication using the :compact keyword:

<cl> (xref:print-caller-trees :compact t)
Rooted calling trees:
TOP-LEVEL

FROB
FROB-ITEM

APPEND-FROBS
BARF

FROWZ
FROWZ

PROCESS-KEYS
SNARF-ITEM
PROCESS-KEY

SYMBOL-NAME-KEY
NODE-POSITION

This time the tree is printed only once, and only the symbol frowz is repeated.

A PostScript version of the call graph may be created using the psgraph-xref interface from
XREF to PSGRAPH. To use this interface, load PSGRAPH and evaluate the definition of
psgraph-xref which is commented out in xref.lisp. Running psgraph-xref then creates
a separate PostScript file for each root of a call graph in the database. The file
xref-test.lisp has only one root, the function top-level:

* (xref:psgraph-xref)
Creating PostScript file "top-level.ps".
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Figure 2-1 shows what this graph looks like.

TOP-LEVEL

FROB FROB-ITEM APPEND-FROBS

BARF FROWZ

FROWZ

PROCESS-KEYS

SNARF-ITEM

PROCESS-KEY SYMBOL-NAME-KEY

NODE-POSITION

Figure 2-1: Sample PostScript Call Graph

2.5. Extending XREF

As noted in Section 2.1, XREF works by considering the Lisp forms to be parse trees, and
matching the parse trees against a grammar for the language. The following macros define new
function and macro call patterns. They may be used to extend XREF to handle new definition
forms and extensions to Common Lisp.

define-pattern-substitution (name pattern) [Macro]

Defines name to be equivalent to the specified pattern. Useful for making patterns
more readable. For example, the lambda-list pattern is defined as a pattern
substitution, thereby making the definition of the defun caller-pattern simpler.

define-caller-pattern (name pattern &optional caller-type) [Macro]

Defines name as a function/macro call with argument structure described by pattern.
caller-type, if specified, assigns a type to the pattern, which may be used to exclude
references to name while viewing the database. For example, all the Common Lisp
definitions have a caller-type of :lisp or :lisp2, so that you can exclude references
to common Lisp functions from the calling tree.

define-variable-pattern (name &optional caller-type) [Macro]

Defines name as a variable reference of type caller-type. This is mainly used to
establish the caller-type of the variable.

define-caller-pattern-synonyms (source destinations) [Macro]

For defining function caller pattern syntax synonyms. For each name in destinations,
defines its pattern as a copy of the definition of source. Allows a large number of
identical patterns to be defined simultaneously. Must occur after the source pattern has
been defined.

XREF includes pattern definitions for the latest Common Lisp specification, as published in [7].

Patterns may be either structures to match, or a predicate like #’numberp. The pattern
specification language is similar to the notation used in [7], but in a more Lisp-like format:
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(:eq name) The form element must be eq to the symbol name.

(:test test) test must be true when applied to the form element.

(:typep type) The form element must be of type type.

(:or pat1 pat2 ...) Tries each of the patterns in left-to-right order, until one
succeeds. Equivalent to { pat1 | pat2 | ... }.

(:rest pattern) The remaining form elements are grouped into a list which is
matched against pattern.

(:optional pat1 ...) The patterns may optionally match against the form element.
Equivalent to [ pat1 ... ].

(:star pat1 ...) The patterns may match against the patterns any number of
times, including zero. Equivalent to { pat1 ... }*.

(:plus pat1 ...) The patterns may match against the patterns any number of
times, but at least once. Equivalent to { pat1 ... }+.

&optional, &key, &rest Similar in behavior to the corresponding lambda-list keywords.

FORM A random Lisp form. If a cons, assumes the car is a function or
macro and tries to match the args against that symbol’s pattern.
If a symbol, assumes it’s a variable reference.

:IGNORE Ignores the corresponding form element.

NAME The corresponding form element should be the name of a new
definition (e.g., the first arg in a defun pattern is name).

FUNCTION, MACRO The corresponding form element should be a function
reference not handled by form. Used in the definition of the
pattern fn which is used in defining the patterns for apply and
funcall.

VAR The corresponding form element should be a variable
definition or mutation. Used in the definition of let, let*,
etc.

VARIABLE The corresponding form element should be a variable
reference.

In all other pattern symbols, it looks up the symbol’s pattern substitution and recursively matches
against the pattern. It will automatically destructure list structure that does not include consing
dots.

Among the predefined pattern substitution names are:

STRING, SYMBOL, NUMBER Appropriate :test patterns.

LAMBDA-LIST Matches against a lambda list.

BODY Matches against a function body definition.

FN Matches against #’<function>, ’<function>, and lambdas. This is
used in the definition of apply, funcall, and the mapping patterns.
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See xref.lisp for others.

Here are some sample pattern definitions which illustrate the use of
define-caller-pattern:

(define-caller-pattern defun
(name lambda-list
(:star (:or documentation-string declaration))
(:star form))

:lisp)

(define-caller-pattern funcall (fn (:star form)) :lisp)

In general, XREF is intelligent enough to handle any sort of simple funcall. One only needs to
specify the syntax for macros that use destructuring (unless *handle-macro-forms* is t and
the files being analyzed are also loaded), for functions with some argument positions that are
special (e.g., apply and funcall), or to indicate that the function is of a specific caller type.

2.6. Implementation Notes

The functions record-callers and record-callers* do the real work in cross referencing
a file. record-callers processes patterns that are symbols or otherwise atomic, while
record-callers* processes simple list-structure patterns.

record-callers checks if the pattern is one of the known basic patterns. If so, it updates the
database appropriately. Otherwise, it is a pattern defined in terms of other patterns, and
record-callers substitutes the definition of the pattern substitution.

If the pattern is form, record-callers uses the form’s tag (the car of the form) to look up a
new pattern from the pattern database, and calls record-callers recursively on the form and the
new pattern. If *handle-macro-forms* is t and the tag is a macro, it expands the macro and
calls itself again on the result. Otherwise, record-callers assumes that the form is a random
function call, and processes it with a default pattern of (:star form).

record-callers also handles the special :eq, :test and :typep patterns. If the pattern is a
list and not one of these special patterns, record-callers asks record-callers* to process
the form and pattern.

record-callers (filename form &optional pattern parent [Function]
(environment nil) funcall)

record-callers is the main routine used to walk down the code. It matches the
pattern against the form, possibly adding statements to the database. parent is the name
defined by the current outermost definition; it is the caller of the forms in the body.
environment is used to keep track of the scoping of variables. funcall deals with the
type of variable assignment and determines how the environment should be modified.
record-callers handles atomic patterns and simple list-structure patterns. For
complex list-structure pattern destructuring, it calls record-callers*.
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record-callers* is a more complex function. It is recursive in both record-callers and
itself, and also maintains a stack of unprocessed patterns. The stack is needed to process the
:optional, :star, :plus and :rest patterns correctly.  For example, to process a
:optional pattern element, record-callers* first tries matching the form against the rest of
the :optional pattern element, pushing the other pattern elements onto the stack. If at any
point record-callers* runs out of pattern elements, it continues from the pattern at the top of
the stack. If processing the form with the :optional pattern element included fails (returns
nil), record-callers* then tries skipping over the element.  The :star, :plus and :rest

patterns are similar.

record-callers* (filename form pattern parent environment &optional [Function]
continuation in-optionals in-keywords)

record-callers* handles complex list-structure patterns, such as ordered lists of
subpatterns, patterns involving :star, :plus, &optional, &key, &rest, etc.
continuation is a stack of unprocessed patterns, in-optionals and in-keywords are
corresponding stacks which determine whether &rest or &key has been seen yet in
the current pattern.

XREF assumes that the source code is syntactically correct Lisp, and uses read to read forms
from the file. If xref-file drops into the debugger while processing a file, examining the value
of *last-form* can help determine what went wrong.

*last-form* () [Variable]

The last form read from the file. Useful for figuring out what went wrong when
xref-file drops into the debugger.

The function gather-tree is used to create a list-structure tree representation of the database.
Since the database may contain cycles, it stops when a reference is repeated in order to avoid
infinite loops. The function make-caller-tree does something similar for when the root
nodes are not specified. It calls find-roots-and-cycles to return a list of the uncalled
callers as potential roots. The function print-indented tree prints out such trees using
indentation to represent child nodes.

gather-tree (parents &optional already-seen [Function]
(mode *default-graphing-mode*)
(types-to-ignore *types-to-ignore*) compact)

Extends the tree, copying it into list structure, until it repeats a reference (hits a cycle).

make-caller-tree (&optional (mode *default-graphing-mode*) [Function]
(types-to-ignore *types-to-ignore*) compact)

Outputs list structure of a tree which roughly represents the possibly cyclical structure
of the caller database.  If mode is :call-graph, the children of a node are the
functions it calls. If mode is :caller-graph, the children of a node are the functions
that call it.  If compact is t, tries to eliminate the already seen nodes, so that the graph
for a node is printed at most once. Otherwise it will duplicate the node’s tree (except
for cycles). This is useful because the call tree is actually a directed graph, so we can
either duplicate references or display only the first one.
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find-roots-and-cycles (&optional (mode *default-graphing-mode*) [Function]
(types-to-ignore *types-to-ignore*))

Returns a list of uncalled callers (roots) and called callers (potential cycles).

print-indented-tree (trees &optional (indent 0)) [Function]

Simple code to print out a list-structure tree (such as those created by
make-caller-tree) as indented text.
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3. METERING: Code Timing and Consing Profiler

The METERING system is a portable Common Lisp code profiling tool.  It gathers timing and
consing statistics for specified functions while a program is running. The METERING system is
the result of a merging of the capabilities of the MONITOR program written by Chris McConnell
and the PROFILE program written by Skef Wholey and Rob MacLachlan and extending the
resulting program. Portions of the documentation from those programs were incorporated into
this chapter.

3.1. Installing METERING

Before using METERING there are a number of small, implementation-dependent macros you
may want to customize for your Lisp.

The METERING system will collect timing statistics in any valid Common Lisp. The macro
get-time is called to find the total number of ticks since the beginning of time. The constant
time-units-per-second is used to convert ticks into seconds.  These default to
get-internal-run-time and internal-time-units-per-second, respectively.

To collect consing statistics, define a get-cons macro for your implementation of Lisp. The
get-cons macro has been defined for CMU Common Lisp, Lucid Common Lisp (3.0), and
Macintosh Allegro Common Lisp (1.3.2). If you write a get-cons macro for a particular
version of Common Lisp, we’d appreciate receiving the code. This macro should return the total
number of bytes consed since the beginning of time.

The METERING system works by encapsulating the definitions of the monitored functions. By
default, this encapsulation captures the arguments in an &rest arg, and then applies the old
definition to the arguments. In most Lisps this will result in additional consing.  To reduce the
extra consing, when a required-arguments function is available we use it to find out the
number of required arguments, and use &rest to capture only the non-required arguments (if
any). The required-arguments function should return two values: the first is the number of
required arguments, and the second is non-nil if there are any non-required arguments (e.g.,
&optional, &rest, and &key args). The required-arguments function has been defined for
CMU Common Lisp, Macintosh Allegro Common Lisp (1.3.2), Lucid Common Lisp (3.0), and
Allegro Common Lisp.

Since the encapsulation process creates closures, performance and accuracy are greatly improved
if the code is compiled. Accordingly, the user is warned if the source is loaded instead of
compiling it first.



20 Portable Utilities for Common Lisp

3.2. Using METERING

This section describes all of the basic METERING commands and variables which control their
behavior. METERING includes functions for monitoring and unmonitoring functions, as well as
functions for displaying a report of profiling statistics, including number of calls, CPU time, and
storage usage.

3.2.1. Suggested Usage

The easiest way to use the METERING system is to load it and evaluate either

(mon:with-monitoring (<name>*) ()
<form>*)

or

(mon:monitor-form <form>)

The former allows you to specify which functions will be monitored, while the latter monitors all
functions in the current package. Both automatically produce a table of statistics. Variations on
these functions can be constructed from the monitoring primitives, which are described in
Section 3.2.2.

Start by monitoring big pieces of the program, then carefully choose which functions to be
monitored next.

If you monitor functions that are called by other monitored functions, decide whether you want
inclusive or exclusive statistics. The former includes the monitoring time of inner functions from
their callers, while the latter subtracts it. It is important to be aware of what kind of statistics you
are displaying, since the difference can be confusing.

If the per-call time reported is less than 1/10th of a second, then consider the clock resolution
and profiling overhead before you believe the time. You may need to run your program many
times in order to average out to a higher resolution.

3.2.2. METERING Primitives

The with-monitoring and monitor-form macros are the main external interface to the
METERING system.

with-monitoring ((&rest functions) [Macro]
(&optional (nested :exclusive) (threshold 0.01)
(key :percent-time))
&body body)

The named functions are monitored, the body forms executed, a table of results
printed, and the functions unmonitored. The nested, threshold, and key arguments are
passed to report-monitoring.
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monitor-form (form &optional (nested :exclusive) [Macro]
(threshold 0.01) (key :percent-time))

Monitor the execution of all functions in the current package during the evaluation of
form. A table of results is printed. The nested, threshold, and key arguments are passed
to report-monitoring.

The functions monitor, unmonitor, and monitor-all are primitives which are called by
with-monitoring and monitor-form.

*monitored-functions* () [Variable]

List of all functions that are currently being monitored.

monitor (&rest names) [Macro]

The named functions are set up for monitoring by augmenting their function
definitions with code that gathers statistical information about code performance. As
with the trace macro, the names are not evaluated. If a function is already monitored,
unmonitors it before remonitoring (useful when a function has been redefined). If a
name is undefined, gives a warning and ignores it. If no names are specified, returns a
list of all monitored functions. If a name is not a symbol, it is evaluated to return the
appropriate closure. This allows the monitoring of closures stored anywhere, such as in
a variable, array, or structure. Most other metering packages do not handle this.

unmonitor (&rest names) [Macro]

Remove the monitoring on the named functions. If no names are specified, all
currently monitored functions are unmonitored.

monitor-all (&optional (package *package*)) [Function]

Monitors all functions in the specified package, which defaults to the current package.

monitored (function-place) [Function]

Predicate which tests whether a function is monitored.

The following two functions are used to erase accumulated statistics.

reset-monitoring-info (name) [Function]

Resets the monitoring statistics for the specified function.

reset-all-monitoring () [Function]

Resets the monitoring statistics for all monitored functions.

The functions report-monitoring and display-monitoring-results are used to print a
statistical report on the monitored functions. display-monitoring-results may be called
to view the data created by report-monitoring in various ways.
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report-monitoring (&optional names (nested :exclusive) [Function]
(threshold 0.01) (key :percent-time)
ignore-no-calls)

Creates a table of monitoring information for the current state of the specified list of
functions, and displays the table using display-monitoring-results. If names is
:all or nil, uses all currently monitored functions.

Takes the following arguments:

• nested specifies whether nested calls of monitored functions are included in the
times of monitored functions.

• If :inclusive, the per-function information is for the entire duration of
the monitored function, including any calls to other monitored functions.
If functions A and B are monitored, and A calls B, then the accumulated

5time and consing for A will include the time and consing of B.

• If :exclusive, the information excludes time attributed to calls to other
monitored functions. This is the default.

• threshold specifies that only functions which have been executed more than
threshold amount of the time will be reported. Defaults to 1%. If a threshold of
0 is specified, all functions are listed, even those with 0 or negative running
times. See relevant note in Section 3.4.2.

• key specifies that the table be sorted by one of the following sort keys:
• :function. Alphabetically by function name.

• :percent-time. By percent of total execution time.

• :percent-cons. By percent of total consing.

• :calls. By number of times the function was called.

• :time-per-call. By average execution time per function.

• :cons-per-call. By average consing per function.

• :time. Same as :percent-time.

• :cons. Same as :percent-cons.

5If a function calls itself recursively, the time spent in the inner call(s) may be counted several times.
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display-monitoring-results (&optional (threshold 0.01) [Function]
(key :percent-time) (ignore-no-calls t))

Prints a table showing for each named function:

• the total CPU time used in that function for all calls

• the total number of bytes consed in that function for all calls

• the total number of calls

• the average amount of CPU time per call

• the average amount of consing per call

• the percent of total execution time spent executing that function

• the percent of total consing spent consing in that function
Summary totals of the CPU time, consing, and calls columns are printed.  An estimate
of the monitoring overhead is also printed. May be run even after unmonitoring all the
functions, to play with the data.

3.3. An Example of METERING Output

The following is an example of what the table looks like:

Cons
% % Per Total Total

Function Time Cons Calls Sec/Call Call Time Cons
----------------------------------------------------------------------
FIND-ROLE: 0.58 0.00  136 0.003521 0 0.478863 0
GROUP-ROLE: 0.35 0.00  365 0.000802 0 0.292760 0
GROUP-PROJECTOR: 0.05  0.00 102 0.000408 0 0.041648 0
FEATURE-P: 0.02 0.00  570 0.000028 0 0.015680 0
----------------------------------------------------------------------
TOTAL: 1173 0.828950 0
Estimated total monitoring overhead: 0.88 seconds

3.4. Usage Notes

This section comments on some aspects of the implementation that may affect the accuracy of
the statistics.

3.4.1. Clock Resolution

On most machines, the length of a clock tick is much longer than the time it takes a simple
function to run. For example, on an IBM RT-APC the clock resolution is 1/100th of a second, on
a Decstation 3100 it is 1/1000th of a second, and on a Symbolics 3640 it is 1/977th of a second.
This means that if a function is called only a few times, then only the first few decimal places are
really meaningful.



24 Portable Utilities for Common Lisp

3.4.2. Calculating Monitoring Overhead

Every time a monitored function is called, the added monitoring code takes some amount of time
to run. This can result in inflated times for functions that take little time to run. Also, in many
Lisps the function get-internal-run-time conses, which can affect the consing statistics.
Accordingly, an estimate of the overhead due to monitoring is subtracted from the time and
storage reported for each function.

Although this correction works fairly well, it is not completely accurate. This can result in times
that become increasingly meaningless for functions with shorter runtimes. For example,
subtracting the estimated overhead may result in negative times for some functions. This should
only be of concern when the estimated profiling overhead is many times larger than the reported
total CPU time.

If you monitor functions that are called by monitored functions, in :inclusive mode the
monitoring overhead for the inner functions are subtracted from the CPU time for the outer

6function. In :exclusive mode this is not necessary, since we subtract the monitoring time of
inner functions, overhead and all.

Otherwise, the estimated monitoring overhead is not counted in the reported total CPU time. The
sum of total CPU time and the estimated monitoring overhead should be close to the total CPU
time for the entire monitoring run (as reported by the time macro).

The timing overhead factor is computed at load time. This will be incorrect if the monitoring
code is run in a different environment than that in which the file was loaded. For example, saving
a Lisp image on a high performance machine and running it on a low performance one will result
in an erroneously small overhead factor.

If the statistics vary widely, possible causes are:

• Garbage collection. Try turning it off and then running the code. Be forewarned that
running an encapsulated function results in some extra consing, and that
get-internal-run-time will probably cons as well.

• Swapping. The time it takes to swap your function into memory can affect the
reported statistics. If you have enough memory, try executing your form once before
monitoring it so that it will be swapped into memory.

• Resolution of internal-time-units-per-second. This value is rather coarse
in many Lisps, as noted in Section 3.4.1. If this value is too low, the timings become
wild. Try executing your test form more times or for a larger number of iterations.

6This is accomplished by counting for each function not only the number of calls to the function itself, but also
the number of calls to monitored functions. This can become rather confusing for recursive functions.
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3.5. Implementation Notes

The overhead is calculated by monitoring stub-function and running it for a large number of
times (overhead-iterations), storing the timing and consing overhead into the variables
*monitor-time-overhead* and *monitor-cons-overhead*, respectively. Since
stub-function is a null function, this results in a fairly accurate estimate for the overhead of
monitoring a function. If you suspect that these values are inaccurate, try running
set-monitor-overhead again.

*monitor-time-overhead* () [Variable]

The amount of time an empty monitored function costs.

*monitor-cons-overhead* () [Variable]

The amount of cons an empty monitored function costs.

overhead-iterations 5000 [Constant]

Number of iterations over which the timing overhead is averaged.

stub-function () [Function]

A null piece of code run monitored to estimate monitoring overhead.

set-monitor-overhead () [Function]

Determines the average overhead of monitoring by monitoring the execution of an
empty function many times.

The key idea behind METERING is to replace the definition of the monitored function with a
closure that records the monitoring data and updates the data with each call to the function. As
noted in Section 3.1, we can reduce the amount of consing done by the &rest arg in each lambda
by using the &rest arg to capture only the non-required arguments. The function
make-monitoring-encapsulation returns a lambda expression which, when called with a
function name, encapsulates it with a closure that has the right number of required arguments.
To create these closures efficiently, we precompute the encapsulation-creating functions for up
to precomputed-encapsulations number of required arguments (with and without optional
arguments) and store them in a hash table for later retrieval by monitoring-encapsulate. If,
when encapsulating a function, the encapsulation-creating function is not found in the hash table
by find-encapsulation, a new function is added to the table.  Since we’re precomputing
closure functions for common argument signatures, there is no need to call compile for each
monitored function.

make-monitoring-encapsulation (min-args optionals-p) [Function]

Makes a function which will appropriately encapsulate any function with min-args
required arguments.

precomputed-encapsulations 8 [Constant]

We create precomputed encapsulations for up to this number of required arguments.
Any others will be computed as needed.
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*existing-encapsulations* (make-hash-table :test (function equal)) [Variable]

Hash table which maps from common argument signatures (required-args .  optionals-
p) to appropriate precomputed closure functions.

find-encapsulation (min-args optionals-p) [Function]

Used to find the appropriate precomputed encapsulation function if it exists, or create
(and save) a new one if necessary.

monitoring-encapsulate (name &optional warn) [Function]

Monitors the function Name. If already monitored, unmonitor first.

monitoring-unencapsulate (name &optional warn) [Function]

Removes monitoring encapsulation code from around Name.

The variables *monitor-results* and *no-calls* are associated with the functions that
create and display monitoring statistics.

*monitor-results* () [Variable]

A table of monitoring statistics is stored here.

*no-calls* () [Variable]

A list of monitored functions which weren’t called.
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4. DEFSYSTEM: A "make" for Lisp
7The DEFSYSTEM program is a portable system definition facility for Common Lisp. It is useful

for managing programs which consist of several files, and provides a convenient way to describe
dependencies between files in the system and dependencies of the system on other systems.

A system is defined as hierarchical layers of modules, with an optionally matching directory
structure. In contrast with the Symbolics defsystem, systems are described solely in terms of
their structure; the user does not need to worry about procedural matters such as compilation
order. For example, the components of a system may be listed in any order the user desires,
because the defsystem macro reorganizes them according to the file-dependency constraints
specified by the user. Since it accomplishes this by performing a topological sort of the
constraint graph, cyclical file dependencies are not supported (i.e., the file-dependency graph
must be a DAG).

DEFSYSTEM includes many of the basic features, such as minimizing the amount of compilation
and loading that must be done when some part of the system is changed. Selective recompilation
occurs only when the binary file either does not exist or is older than the corresponding source
file, or when the file depends on other files that needed to be recompiled. Of course, the user can
decide to override this behavior and require that all files be recompiled, even those whose binary
files are up to date.

Only two operations on systems are currently defined (compile and load). The interface for
defining new operations on systems, however, is simple and straightforward.

DEFSYSTEM does not currently support patching.

4.1. Installing DEFSYSTEM

Before using DEFSYSTEM, decide if you want to have one or more central directories where
system definition files will be kept.  If so, modify the value of *central-registry* to
contain a list of the pathnames of those directories.

Verify that the value of *filename-extensions* includes source and binary extensions for
your Lisp; if not, add them.

Set the variable *dont-redefine-require* to t if you want to prevent DEFSYSTEM from
redefining require. This is useful for Lisps that treat require specially in the compiler. (For
example, some Lisps treat require as if an (eval-when (compile load eval) ...)

7Though home-grown, it was inspired by fond memories of the defsystem facility on Symbolics 3600 Lisp
Machines [3] [4]. The exhaustive list of filename extensions for various Lisps was initially taken from Xerox
Corporation’s PCL miniature defsystem facility. The idea to have one operate-on-system function in
addition to separate compile-system and load-system functions was also taken from PCL.
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were wrapped around the form, and lose this special treatment when require is redefined.
While we provide an alternate redefinition of require as a macro to work around this problem,
some users may find it simpler to not redefine require, especially if they don’t need the
backward compatibility.)

If you intend to use logical pathnames in your system definitions, the LOGICAL-PATHNAMES

package must be loaded before compiling or loading DEFSYSTEM.

Save a Lisp image with DEFSYSTEM loaded, so that you won’t have to reload it each time you
restart Lisp.

4.2. Overview

DEFSYSTEM is loaded into the "MAKE" package, so prefix all the following functions and
variables with a "MAKE:" or the nickname "MK:". This name was chosen to avoid naming
conflicts with various Lisps, many of which already have a "DEFSYSTEM" package for their
own particular system construction tool.

The external interface to the defsystem facility consists of the defsystem macro and the
operate-on-system function. defsystem is used to define a new system and
operate-on-system to compile it and load it. The functions compile-system and
load-system are provided as an alternate way of compiling and loading a system. They call
operate-on-system with appropriate arguments. The definition of require has been
modified to mesh well with systems defined using defsystem, and is fully backward-
compatible.

To use DEFSYSTEM,
1. Write a defsystem form for your system, and save it in a file of type "system".

If the name of your system is foo, the file should be named "foo.system". You
may want to move the file into one of your central registry directories.

2. Use the function operate-on-system (or compile-system and
load-system) to do things to your system. For example evalutating
(operate-on-system "foo" ’load) will load the system, while evalutating
(operate-on-system "foo" ’compile) will compile it. [If you are going to
load the system and not compile it, you can also use (require "foo") to load
it.]

DEFSYSTEM checks for an appropriately named system definition file first in your current
directory, then in the central registry directories in the order in which they are listed in the
variable *central-registry*. If it finds a match, it will reload the system definition file if it
has changed since you last loaded the system definition. If the system definition file is located in
neither the current directory nor one of the central registry directories, you must explicitly load
the system definition file.
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4.3. Using DEFSYSTEM

This section describes all of the basic DEFSYSTEM commands and the variables which control
their behavior. DEFSYSTEM includes functions for defining new systems, compiling systems, and
loading systems.

4.3.1. Defining a System

A system is a set of components with associated properties. The properties include the type of
the component, its name, source and binary pathnames, its package, initializations and
finalizations, and the component dependencies, as well as the components of the component.

The defsystem macro is used to define new systems.

defsystem (name &rest definition-body) [Macro]

Defines name to be the name of the system described in definition-body. This name is
used for all operations on the system.  The definition body consists of a sequence of
keyword-value pairs, where the keywords correspond to the properties described
below. These properties determine what files are included in the system, what files
depend on other files, and any features of the overall system, such as its directory or
package. name may be a symbol or a string; if a symbol, the symbol-name is used. The
format of the top level defsystem definition parallels that of components, except the

8component type is replaced with the symbol defsystem. Once a system is defined,
certain operations such as loading and compilation may be applied to it.

4.3.1.1. Component Types

There are five types of components, :system, :subsystem, :module, :file, and
:private-file.

• Components of type :system have absolute pathnames and are used to define a
multi-system system. The toplevel system defined by the defsystem macro is
implicitly of type :system.

• Components of type :subsystem have relative pathnames and are used to define
subsystems of a system.

• Components of type :module have pathnames that are relative to their containing
system or module, and may contain a set of files and/or modules. This enables one
to define modules, submodules, and so on.

• Components of type :file represent files with relative pathnames.

• Components of type :private-file also represent files, but with absolute
pathnames. Components of type :private-file are useful for having private
copies of one or two files of a system without having to rewrite the entire system
definition or duplicate the entire system directory tree.

8System definitions may be automatically loaded if not defined. See Section 4.5.2.
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4.3.1.2. Component Names

The name of a component is refered to by other components to indicate that they depend on it.
The name of a component may also be used as the name of the subdirectory or file associated
with the component.  See Section 4.3.1.3 for details.

The name of a component may be a symbol or a string. For ease of access the definition of a
system (its component) is stored in a hash table entry corresponding to an uppercase version of
the string or symbol name. If the system name is a symbol, for all other purposes the name is
converted to a lowercase string (system names that are strings are left alone). A system defined
as ’foo will have an internal name of "FOO" and will be stored in the file "foo.system". A
system defined as "Foo" will have an internal name of "FOO" and will be stored in the file
"Foo.system".

4.3.1.3. Component Pathnames and File Types

The absolute pathnames (for components of type :system and :private-file) and relative
pathnames (for all other components) of the binary and source files may be specified using the

9:source-pathname and :binary-pathname keywords in the component definition. The
pathnames associated with a module correspond to subdirectories of the containing module or
system. If no binary pathname is specified, the binaries are distributed among the sources.  If no
source pathname is given for a component, it defaults to the name of the component. Since the
names are converted to lowercase, pathnames must be provided for each component if the
operating system is case sensitive (unless the pathnames are all lowercase). Similarly, if a
module does not correspond to a subdirectory, a null-string pathname ("") must be provided.
One may change this behavior by modifying the variable *source-pathname-default*. For
example, one could set it to "" instead of nil to avoid having to specify :source-pathname

"" in every module if the files are kept in a single flat directory.

File types (e.g., lisp and fasl) for source and binary files may be specified using the
:source-extension and :binary-extension keywords. These file types are inherited by
the components of the system. If the file types are not specified or given as nil, DEFSYSTEM

makes a reasonable choice of defaults based on the machine type and underlying operating
system.

At system definition time, every relative directory is replaced with the corresponding cumulative
absolute pathname with all the pathname-components specified.

9Macintosh pathnames are not fully supported at this time. For example, trailing colons must be included in the
pathnames of each module. For system definitions to be portable between UNIX Lisps and Macintosh Common
Lisp, one must use the LOGICAL-PATHNAMES package.
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4.3.1.4. Segregating Binaries for Different Lisps

The user may wish to maintain different subdirectories for the binaries of different Lisps. The
function afs-binary-directory has been provided to imitate the behavior of the @sys
feature of the Andrew File System on systems not running AFS. The @sys feature allows soft
links to point to different directories depending on which platform is accessing the files. A
common setup would be to have the bin directory soft linked to .bin/@sys and to have
subdirectories of .bin corresponding to each platform (.bin/vax_mach, .bin/unix,
.bin/pmax_mach, etc.).

afs-binary-directory (root-directory) [Function]

Returns the appropriate binary directory for use as the :binary-pathname argument
in the defsystem macro. For example, if we evaluate (afs-binary-directory
"foodir/") on a vax running the Mach operating system,
"foodir/.bin/vax_mach/" would be returned.

The functions machine-type-translation and software-type-translation are used
to define the directory components corresponding to the values of (machine-type) and
(software-type) for particular Lisps.

machine-type-translation (name &optional dir-component) [Function]

software-type-translation (name &optional dir-component) [Function]

4.3.1.5. Including Foreign Systems

Systems defined using some other system definition tool may be included by providing separate
compile and load forms for them (using the :compile-form and :load-form keywords).
These forms will be run if and only if they are included in a module with no components. This is
useful if it isn’t possible to convert these systems to the defsystem format all at once.

4.3.1.6. Component Packages, Initializations and Finalizations

One may also specify the package to be used and any initializations and finalizations. Package
usage (specified with the keyword :package) remains in force until the *package* variable
reverts to its old value at the end of the operation on the component.  Initializations (specified
with the keyword :initially-do) are evaluated before the system is loaded or compiled, and
finalizations (specified with the keyword :finally-do) are evaluated after the system is
finished loading or compiling. The argument to the keyword is a form which is evaluated.
Multiple forms may be evaluated by wrapping a progn around the forms.

4.3.1.7. Component Dependencies

The dependencies of a system, module or file are specified with the :depends-on keyword,
followed by a list of the names of the components the system, module or file depends on. The
components referred to must exist at the same level in the hierarchy as the referring component.
This enforces the modularity of the system definition. If module A depends on a file contained
within module B, then module A depends on module B and should be specified as such. This
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requirement is not enforced in the software, but any use contrary to it will produce unpredictable
results.

Thus the only requirement for how the files are to be organized is that at the level of each
module or system, the dependency graph of the components must be a DAG (directed acyclic
graph). If there are any dependency cycles (i.e., module A uses definitions from module B, and
module B uses definitions from module A), the defsystem macro will not be able to compute a
total ordering of the files (a linear order in which they should be compiled and loaded). Usually
defsystem will detect such cycles and halt with an error.

If no dependencies are provided for the system, modules and files, it may load them in any order.
There is no guarantee of loading them in any particular order. Currently, however, it loads them
in serial order, because the topological-sort it uses is a stable sorting method.

The algorithm topologically sorts the DAG at each level in the hierarchy (system level, module
level, submodule level, etc.) to ensure that the system’s files are compiled and loaded in the right
order. This occurs at system definition time, rather than at system use time, because it probably
saves the user some time to do it this way.

4.3.1.8. Load-only and Compile-only Components

One may define components that are load-only and compile-only using the keywords
:load-only t and :compile-only t.

Load-only components are not compiled during operation :compile. For such components,
loading the component satisfies any demand for recompilation.

Compile-only components are not loaded during operation :compile. The component is either
loaded or compiled, but not both. For such components, compiling the file satisfies the demand
to load it.  This isn’t as strange as it seems at first. For example, PCL defmethod and
defclass definitions wrap an (eval-when (compile load eval) ...) around the body
of the definition, making it pointless in some Lisps to compile and load a file containing only
class definitions.

4.3.1.9. Component Definitions

The components of a system, module or file are specified with the :components keyword, and
are defined in a manner analogous to the way in which a system is defined.

The general format of a component’s definition is:

<definition> ::= (<type> <name> [:host <host>] [:device <device>]
[:source-pathname <pathname>]
[:source-extension <extension>]
[:binary-pathname <pathname>]
[:binary-extension <extension>]
[:package <package>]
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[:initially-do <form>]
[:finally-do <form>]
[:components (<definition>*)]
[:depends-on (<name>*)]
[:load-only t]
[:compile-only t]
[:compile-form <form>]
[:load-form <form>])

<type> ::= :system | :module | :file | :private-file

The top level defsystem form does not specify a type, replacing it with the symbol defsystem.

In addition, component definitions which are strings or lists whose first element is not a valid
type are assumed to be of type :file. This allows the user to specify a list of files as a list of
the filenames.

Here are three examples of various component definitions:

(:system test
:source-pathname "/afs/cs.cmu.edu/user/mkant/Defsystem/test/"
:source-extension "lisp"
:binary-pathname nil
:binary-extension nil
:components ((:module basic

:source-pathname ""
:components ((:file "primitives")

(:file "macros"
:depends-on ("primitives"))))

(:module graphics
:source-pathname "graphics"
:components ((:file "macros"

:depends-on ("primitives"))
(:file "primitives"))

:depends-on (basic))))

(:module graphics
:source-pathname "graphics"
:components (("macros" :depends-on ("primitives"))

(:private-file "primitives")))

(:module graphics
:source-pathname "graphics"
:components ("primitives" "macros" "scanning"))

Thus one would define a system named foo that depends on systems bar and bletch as
follows:

(defsystem foo
:source-pathname "/afs/cs.cmu.edu/user/mkant/foo/"
:source-extension "lisp"
:binary-pathname nil
:binary-extension nil
:components ((:module graphics

:source-pathname "graphics"
:components ("primitives" "macros" "scanning")))
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:depends-on (bar bletch))

This system would load the bar and bletch systems before loading any files of the foo

system. Note that the modularity restrictions require that bar and bletch and not modules or
files. Components can depend only on components of the same complexity; thus systems can
depend only on systems.

Also worth stressing is the fact that systems in DEFSYSTEM are structural, unlike the procedural
systems in the Symbolics defsystem. So while specifying (:system bar) in the body of a
Symbolics defsystem would include the bar system at that point, in DEFSYSTEM it would be
saying that the bar system has no files. To achieve the same effect one must include the bar

system in the dependency list of the system.

4.3.2. Describing a System

The function describe-system may be used to print a description of a system.

describe-system (name &optional (stream *standard-output*)) [Function]

Prints a description of the system to stream. If name is the name of a system, gets it
and prints a description of the system.  If name is a component, prints a description of
the component.

The function defined-systems may be used to get a list of all currently defined systems.

4.3.3. Removing a System

The function undefsystem may be used to remove the definition of a system.

undefsystem (name) [Function]

Removes the definition of the system named name.

4.3.4. Loading and Compiling a System

The function operate-on-system is used to compile or load a system, or do any other
operation on a system. At present only compile and load operations are defined, but other
operations such as edit, hardcopy, or applying arbitrary functions (e.g., enscript, lpr) to every file
in the system could be easily added.

The syntax of operate-on-system is as follows:

operate-on-system (name operation &key force (version *version*) [Function]
(test *oos-test*) (verbose *oos-verbose*)
(load-source-instead-of-binary *load-source-instead-of-binary*)
(load-source-if-no-binary *load-source-if-no-binary*)
(bother-user-if-no-binary *bother-user-if-no-binary*)
(compile-during-load *compile-during-load*)
dribble (minimal-load *minimal-load*))
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• system-name is the name of the system and may be a symbol or string. If the
system is not defined, it will be loaded from a file with extension "system"
and name the same as the system, located either in the current directory or in
the central registry, if such a file exists. Otherwise an error will be signalled.

• operation is ’compile (or :compile) or ’load (or :load) or any new
operation defined by the user. If no such operation is defined, an error will be
signalled.

• force determines what files are operated on:
• :all (or t) specifies that all files in the system should be used

• :new-source If the operation is ’compile, compiles only those files
whose sources are more recent than the binaries. If the operation is
’load, loads the source if it is more recent than the binaries. This allows
you to load the most up to date version of the system even if it isn’t
compiled.

• :new-source-and-dependents uses all files used by
:new-source, plus any files that depend on the those files or their
dependents (recursively).

• force may also be a list of the specific modules or files to be used (plus
their dependents).

The default for ’load is :all and for ’compile is
:new-source-and-dependents.

• version indicates which version of the system should be used. If nil, then the
usual root directory is used. If a symbol, such as ’alpha, ’beta, ’omega,
:alpha, or ’mark, it substitutes the appropriate (lowercase) subdirectory of
the root directory for the root directory. If a string, it replaces the entire root
directory with the given directory. (default *version*, which is nil)

• verbose is t to print out what it is doing (compiling, loading of modules and
files) as it does it. (default nil)

• test is t to print out what it would do without actually doing it.  If test is t it
automatically sets verbose to t. (default nil)

• compile-during-load is t to compile source files when loading a system if the
binary files are missing or old. If nil it doesn’t compile them, but loads either
the old binaries or the sources. If :query (the default), it will ask the user
whether the files should be compiled.

• dribble should be the pathname of a dribble file if you want to keep a record of
the compilation. (default nil)

• minimal-load is t to only load those files which haven’t already been loaded
yet, as judged by the file-write-dates of the files. Note that DEFSYSTEM will
notice when files change even if a different user compiles the files. (default
*minimal-load*, which is nil)

• load-source-instead-of-binary is t to force the system to load source files
instead of binary files. (default nil)
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• load-source-if-no-binary is t to have the system load source files if the binary
file is missing. (default nil)

• bother-user-if-no-binary is t to have the system bother the user about missing
binaries before it goes ahead and loads them if
load-source-if-no-binary is t. (default t) Times out in 60 seconds
unless *use-timeouts* is set to nil.

The compile-system and load-system functions are just like operate-on-system,
except the operation is hard-coded as :compile and :load, respectively, so there is no
operation argument. Some users find this interface easier to understand. The function oos is
defined as a synonym for operate-on-system.

For example, one would compile all the changed files in a system named "foo" by typing
(mk:compile-system "foo" :force :new-source :minimal-load t). Or one could
selectively compile changed files in the system when loading the system from scratch by
invoking (mk:load-system "foo" :compile-during-load :query). To load all the
files in the system, type (mk:load-system "foo"). To compile all the files in the system,
type (mk:compile-system "foo").

An implicit assumption is that if we need to load a file for some reason, then we should be able
to compile it immediately before we need to load it. This obviates the need to specify separate
load and compile dependencies in the modules.

Note that under this assumption, the example given in the PCL defsystem becomes quite
ludicrous. Those constraints are of the form:

1. C must be loaded before A&B are loaded

2. A&B must be loaded before C is compiled
When you add in the reasonable assumption that before you load C, you must compile C, you get
a cycle.

One case is which this might not be true is in a system which worked on the dependency graph
of individual definitions. But we have restricted ourselves to file dependencies and will stick
with that.  (In situations where a file defining macros must have the sources loaded before
compiling them, most often it is because the macros are used before they are defined, and hence
assumed to be functions. This can be fixed by organizing the macros better, or including them in
a separate file.)

Files which must not be compiled should be loaded in the initializations or finalizations of a
module by means of an explicit load form, or be specified as :load-only t.

It is a known bug that DEFSYSTEM may report loading or compiling a system or module even if it
doesn’t do anything with the files. So if DEFSYSTEM reports loading a module, but doesn’t report
loading any files in the module, it hasn’t touched the files in the module. In a future version of
DEFSYSTEM we may change the message to say that it is checking the system or module.
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4.3.5. Other Operations on Systems

To define a new operation, write a function with parameters component and force that performs
the operation. The function component-pathname may be used to extract the source and
binary pathnames from the component. (component-pathname takes parameters component
and file-type, where file-type is either :source or :binary, and returns the appropriate
pathname.) If the component has "changed" as a result of the operation, t should be returned;
otherwise nil. See the definition of compile-file-operation and
load-file-operation for examples.

Then install the definition using component-operation, which takes as parameters the
symbol which will be used to name the operation in operate-on-system, and the name of the
function. For example, here are the definition of the ’compile and :compile operations:

(component-operation :compile  ’compile-and-load-operation)
(component-operation ’compile  ’compile-and-load-operation)

The user could define operations such as ’hardcopy and ’edit in this manner.

4.3.6. Changes to Require

This defsystem interacts smoothly with the require and provide facilities of Common Lisp.
operate-on-system automatically provides the name of any system it loads, and uses the new
definition of require to load any dependencies of the toplevel system.

One may prevent DEFSYSTEM from redefining require by setting the variable
*dont-redefine-require* to t before compiling DEFSYSTEM.

DEFSYSTEM adds three new optional arguments to require. Thus the new syntax of require
is as follows:

new-require (system-name &optional pathname definition-pname [Function]
default-action (version *version*))

If pathname is provided, the new require behaves just like the old definition.
Otherwise it first tries to find the definition of the system-name (if it is not already
defined it will load the definition file if it is in the current-directory, the central-registry
directory, or the directory specified by definition-pname) and runs
operate-on-system on the system definition. If no definition is found, it will
evaluate the default-action if there is one. Otherwise it will try running the old
definition of require on just the system name. If all else fails, it will print out a
warning.

4.3.7. DEFSYSTEM Variables

The following variables control the default operation of DEFSYSTEM. Many of the program
parameters set by modifying these variables can also be changed by specifying keyword
arguments to DEFSYSTEM functions.
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*defsystem-version* "v2.4 22-MAY-91" [Variable]

Current version number/date for DEFSYSTEM.

*central-registry* () [Variable]

Central directory of system definitions. May be either a single directory pathname, or a
list of directory pathnames to be checked after the local directory.

*bin-subdir* ".bin/" [Variable]

The subdirectory of an AFS directory where the binaries are really kept.

*tell-user-when-done* () [Variable]

If t, system will print "...DONE" at the end of an operation.

*oos-verbose* () [Variable]

If t, operate-on-system describes what it is doing as it does it.

*oos-test* () [Variable]

If t, operate-on-system runs in a test mode where it describes what it would do,
but doesn’t actually do it.

*load-source-if-no-binary* () [Variable]

If t, system will try loading the source if the binary is missing.

*bother-user-if-no-binary* t [Variable]

If t, the system will ask the user whether to load the source if the binary is missing.

*load-source-instead-of-binary* () [Variable]

If t, the system will load the source file instead of the binary.

*minimal-load* () [Variable]

If t, the system tries to avoid reloading files that were already loaded and up to date.

*operations-propagate-to-subsystems* t [Variable]

If t, operations like :compile and :load propagate to subsystems of a system that
are defined either using a component-type of :system or by another defsystem form.

*filename-extensions* (car [Variable]
(quote
(("lisp" . "fasl") ("lisp" . "lbin"))))

Filename extensions for Common Lisp. Each is a read-time conditionalized cons of the
form (Source-Extension .  Binary-Extension). If the Lisp is unknown (as in
*features* not known), defaults to lisp and lbin.

*system-dependencies-delayed* t [Variable]

If t, system dependencies of top-level systems are expanded at run time. There is little
support for not delaying the expansion of top-level system dependencies, so this
variable should not be set to nil.

*providing-blocks-load-propagation* t [Variable]

If t, if a system dependency exists (was provided using provide) in *modules*, it is
not loaded.
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4.4. An Example of Using DEFSYSTEM

This section gives an example of using defsystem for the files in the following directory
structure:

% du -a test
1 test/fancy/macros.lisp
1 test/fancy/primitives.lisp
3 test/fancy
1 test/macros.lisp
1 test/primitives.lisp
1 test/graphics/macros.lisp
1 test/graphics/primitives.lisp
3 test/graphics
1 test/os/macros.lisp
1 test/os/primitives.lisp
3 test/os
12 test

First we define the system test to correspond to the file dependency structure:

(defsystem test
:source-pathname "/afs/cs.cmu.edu/user/mkant/Defsystem/test/"
:source-extension "lisp"
:binary-pathname nil
:binary-extension nil
:components ((:module basic

:source-pathname ""
:components ((:file "primitives")

(:file "macros"
:depends-on ("primitives"))))

(:module graphics
:source-pathname "graphics"
:components ((:file "macros"

:depends-on ("primitives"))
(:file "primitives"))

:depends-on (basic))
(:module fancy-stuff

:source-pathname "fancy"
:components ((:file "macros"

:depends-on ("primitives"))
(:file "primitives"))

:depends-on (graphics operating-system))
(:module operating-system

:source-pathname "os"
:components ((:file "primitives")

(:file "macros"
:depends-on ("primitives")))

:depends-on (basic)))
:depends-on nil)

Then we may use operate-on-system to compile and load the system.

<cl> (operate-on-system ’test ’compile :verbose t)

; - Compiling system "test"
; - Compiling module "basic"
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; - Compiling source file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/primitives.lisp"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/primitives.fasl"
; - Compiling source file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/macros.lisp"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/macros.fasl"
; - Compiling module "graphics"
; - Compiling source file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/graphics/primitives.lisp"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/graphics/primitives.fasl"
; - Compiling source file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/graphics/macros.lisp"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/graphics/macros.fasl"
; - Compiling module "operating-system"
; - Compiling source file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/os/primitives.lisp"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/os/primitives.fasl"
; - Compiling source file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/os/macros.lisp"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/os/macros.fasl"
; - Compiling module "fancy-stuff"
; - Compiling source file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/fancy/primitives.lisp"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/fancy/primitives.fasl"
; - Compiling source file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/fancy/macros.lisp"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/fancy/macros.fasl"
; - Providing system test
NIL

<cl> (operate-on-system ’test ’load :verbose t)

; - Loading system "test"
; - Loading module "basic"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/primitives.fasl"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/macros.fasl"
; - Loading module "graphics"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/graphics/primitives.fasl"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/graphics/macros.fasl"
; - Loading module "operating-system"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/os/primitives.fasl"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/os/macros.fasl"
; - Loading module "fancy-stuff"
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; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/fancy/primitives.fasl"
; - Loading binary file
; "/afs/cs.cmu.edu/user/mkant/Defsystem/test/fancy/macros.fasl"
; - Providing system test
NIL

4.5. Implementation Notes

In this section we discuss some issues relating to the implementation of DEFSYSTEM.

4.5.1. Structural vs. Procedural System Construction Tools

There are two major types of system construction tools, procedural and structural. Procedural
tools define a system as a sequence of explicit construction steps, perhaps augmented with some
description of structural dependencies. The UNIX make [1] and Symbolics defsystem

[3] [4] are examples of this kind of tool. Structural tools define a system in terms of its structure.
Instead of describing how modules are to be constructed, a structural definition describes how
the modules reference each other, and infers the order of construction operations from the
reference graph. The BUILD system [5] is an example of a structure-based system definition tool.

As noted by Robbins in [5], a procedural definition of a system is harder to understand than a
structural definition. In addition, there are several benefits to the separation of construction
knowledge from systems knowledge that occurs in structural system construction tools:

• Such tools can be extended by adding new operations on systems without altering
existing system definitions. Since the tool is not constrained to a particular set of
embedded tasks, the users are free to define new operations.

• When defining a new operation, many low level details (e.g., compilation order) are
hidden from the task definer, simplifying the definition of new operations.

• Structural tools are a more natural way for users to describe systems, allowing them
to concentrate on the overall structure of the system.  Users can ignore low level
details of the construction operations when writing a system. The explicit
declaration of high level system relationships is also much easier to understand.

• It is much easier to automatically generate structural descriptions of systems. For
example, XREF includes tools to assist the user in creating a system definition by
producing the file dependency graph.

Accordingly, we chose to design DEFSYSTEM as a structure-based system construction tool.

The user supplies DEFSYSTEM with a description of the structure of the system, and DEFSYSTEM

infers the compilation steps. The system definition describes how modules reference each other
instead of how they are constructed. From a structural description (module A refers to module B)
it can infer the procedural requirements (a change to module B implies that module A should be
recompiled, but a change to module A does not imply that module B should be recompiled).

Unfortunately, DEFSYSTEM’s mechanism for describing operations is not as elegant or as general
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as BUILD’s. The knowledge about Lisp compilation and loading, although largely isolated into
separate operation definitions, is still partially embedded in the definition of
operate-on-system. So if a new operation is sensitive to reference types other than those
provided for the compile and load operations, it may require revising the definition of

10operate-on-system as well as the system definitions. However, DEFSYSTEM is sufficient
for at least compilation and loading in Lisp, which is where the major need lies.

4.5.2. Retrieving System Definitions

It is desirable that a system definition be automatically loaded if not already present when its
name is referenced by the user or a system definition. find-system implements this behavior,
loading the definition of the system foo from the file "foo.system" in the central registry.
find-system calls compute-system-path to determine the pathname of the file containing
the system definition.

find-system (system &optional (mode :ask) definition-pname) [Function]

Returns the system named system. If the system was not previously defined or the
version on disk is newer, find-system tries to load the system definition. This
allows operate-on-system, compile-system, and load-system to work on
non-loaded as well as loaded system definitions. definition-pname is the pathname for
the file containing the system definition, if provided. Otherwise find-system checks
for a file matching the system name first in the current directory and then in the central
registry directories. If the variable *reload-systems-from-disk* is nil,
find-system will not reload the system definition of a defined system from disk if
the version on disk is newer.

4.5.3. Appending Directories

The append-directories function is used to tack a subdirectory onto a pathname. Sadly,
Common Lisp lacks a primitive to do this. Our definition will work for all Lisps that conform to
the conventions on structured directories [7, Section 23.1.3]. Minor incompatibilities with the
standard are fixed using read-time conditionalization. Major aberrations are handled either using
special purpose code, or using

(namestring (merge-pathnames (or absolute-directory "")
(or relative-directory "")))

which seems to work surprisingly well in VMS-based VaxLisp.

The output from the function test-new-append-directories may be useful for verifying
correct operation of this primitive when porting it to new Lisps.

10For example, we currently assume that compilation-load dependencies and if-changed dependencies are
identical. However, in some cases this might not be true. For example, if we change a macro we have to recompile
functions that depend on it, but not if we change a function. Splitting these apart (with appropriate defaulting) would
be nice, but not worth doing immediately since it may save only a couple of file recompilations, while making the
defsystem much more complex.
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See Appendix II for a discussion of this and other problems with Common Lisp.

append-directories (absolute-directory relative-directory) [Function]

There is no Common Lisp primitive for tacking a subdirectory onto a directory.  We
need such a function because defsystem has both absolute and relative pathnames in
the modules. We assume that absolute-directory is a directory, with no filename stuck
on the end. relative-directory, however, may have a filename stuck on the end.

4.5.4. Defining a System

Defining a system invokes several functions. create-component is the main routine for
creating a representation. It takes care of inheriting appropriate attributes from parent
components, initializes the component’s pathnames using create-component-pathnames

and generate-component-pathname, recursively creates any child components using
expand-component-components and expand-component-definition, ties together the
dependency graph using link-component-depends-on, and topologically sorts the
dependency graph using topological-sort.

4.5.5. Operating on a System

operate-on-system calls operate-on-component to apply the operation to the system and
its components. operate-on-component sets up the component’s package, propagates the
operations to the system’s dependencies if *operations-propagate-to-subsystems* is t
using operate-on-system-dependencies, and does the component’s initializations. Then,
if the component is of type :file or :private-file it applies the operation directly to the
component. Otherwise, it calls operate-on-components to work on the components of the
component. Finally, it does the component’s finalizations and provides the system.

The function compile-and-load-operation corresponds to the :load operation while the
function load-file-operation corresponds to the :compile operation. They use
needs-compilation and needs-loading to determine if the component needs to be
compiled or loaded based on its compile and load times. The compile time is checked by
comparing the file-write-date of the binary file with that of the source file, while the load-time is
cached in the component itself. The delete-binaries-operation function corresponds to
the :delete-binaries operation, which deletes all the binary files associated with a system.

4.5.6. Querying the User with Timeouts

Since compiling and loading large systems can take a considerable amount of time, some users
would prefer to avoid having to babysit the compilation. DEFSYSTEM includes a function
y-or-n-p-wait which is similar to the Common Lisp y-or-n-p but which will time out after
a specified interval of time. All queries from DEFSYSTEM to the user are through
y-or-n-p-wait with reasonable defaults, allowing the user to eat dinner during the
compilation without worrying whether the compilation hung up on a query a few seconds after
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the user left.

Some Lisps, however, have broken definitions of read-char-no-hang and clear-input,
which can result in DEFSYSTEM’s ignoring user input to the queries. Also,

11get-internal-run-time conses considerably in some Lisps, with the result that
y-or-n-p-wait conses several megabytes per minute. The variable *use-timeouts* has
been provided to allow the user to turn off the timeout behavior of y-or-n-p-wait, in which
case it works just like y-or-n-p.

*use-timeouts* t [Variable]

If t, timeouts in y-or-n-p-wait are enabled. Otherwise it behaves like y-or-n-p.
This is provided for users whose Lisps don’t handle read-char-no-hang properly.

*clear-input-before-query* t [Variable]

If t, y-or-n-p-wait will clear the input before printing the prompt and asking the
user for input.

y-or-n-p-wait (&optional (default #\y) (timeout 20) format-string [Function]
&rest args)

y-or-n-p-wait prints the message, if any, and reads characters from *query-io*
until the user enters y, Y or a space as an affirmative, or either n or N as a negative
answer, or the timeout occurs. It asks again if you enter any other characters.

4.5.7. Debugging

The functions files-which-need-compilation and files-in-system may be useful for
debugging an incorrect system definition.

files-which-need-compilation (system) [Function]

Returns a list of files in system which currently need to be compiled to be brought up
to date.

files-in-system (name &optional (force :all) (type :source) version [Function]
&aux system)

Returns a list of all files in the system named name in load order.

11500 bytes per call is not unusual.
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5. LOGICAL-PATHNAMES: Portable Pathnames

The LOGICAL-PATHNAMES system is a portable implementation of the X3J13 June 1989
specification for logical pathnames, as documented in [7, section 23.1.5]. LOGICAL-PATHNAMES

lets programs refer to pathnames and files in a portable manner. The logical pathnames are
mapped to physical pathnames by a set of implementation-dependent and site-dependent rules.

5.1. Overview

Logical pathnames allow large programs to be moved between sites by separating pathname
reference from actual file location. The program will refer to files using logical pathnames. At
each site, a user will specify a set of translations which map from the logical pathnames to the
physical pathnames used on the device.

Logical pathnames provide a uniform convention for filesystem access, with the following
properties:

1. Pathname Portability. The program specifies a pathname in a conventional format
which may be mapped in a reasonably literal manner onto a variety of filesystems.

2. Pathname Aliasing. Logical pathnames introduce a level of indirection in pathname
reference, so that the files may exist in different locations in the different
filesystems. For example, the root directory might change. The translations make
such a change easy to implement.

3. Cross-host Access. The files need not all exist on the same physical host, but may
still be refered to as one logical unit.

This implementation of logical pathnames provides support for parsing and generating physical
pathnames for UNIX, VMS/VAX, Symbolics Lisp Machines and TI Explorers, and is easily
extended to handle additional platforms.

The LOGICAL-PATHNAMES system may be used with the DEFSYSTEM program.

5.1.1. Logical Pathname Syntax

Logical pathnames employ the following syntax:

[host:] [;] {directory ;}* [name] [. type [. version]]

where

host ::= word
directory ::= word | wildcard-word | wildcard-inferiors
name ::= word | wildcard-word
type ::= word | wildcard-word
version ::= word | wildcard-word
word ::= {letter | digit | -}*
wildcard-word ::= [word] * {word *}* [word]
wildcard-inferiors ::= **
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A wildcard-word of * parses as :wild; all others as strings. These definitions may be extended
(e.g., "newest" parsing as :newest) by defining new canonical types.

5.1.2. Incompatibilities with the X3J13 Specification

The logical-pathname structure is not defined as a subclass of pathname since we have no
guarantee about the format of pathname (i.e., whether it is a defstruct or class definition, what

12are the types of its slots, etc.). Many Lisps will be able to replace the definition of
physical-pathname with their definition of pathname by substituting the string "pathname"
for "physical-pathname" and deleting and/or renaming some of the definitions in
LOGICAL-PATHNAMES.

The X3J13 specification does not set a standard for the manner in which wildcards are translated.
We use reversible wildcard pathname translation, similar to that used in the Symbolics logical
pathnames.

5.2. Installing LOGICAL-PATHNAMES

Before loading LOGICAL-PATHNAMES, you may wish to perform the following implementation-
dependent changes:

• Set local-host-table to the pathname of the local host table if you’re using a
host table to determine physical host types. Otherwise, you may wish to redefine the
function physical-host-type to return the physical host types in an
implementation-dependent manner. You may also wish to change the default
physical host type.

• Set the value of directory-structure-type to match the type of the directory
slot of pathname in your Lisp. This should only be necessary if you’re porting it to a
new Lisp.

• Set *logical-translations-directory* to be the pathname of the directory
where translation files are kept.

• Define any additional canonical types and translation rules you wish.

After loading LOGICAL-PATHNAMES, load the physical host table using
load-physical-hostab and any desired translations using
load-logical-pathname-translations.

If you intend to use LOGICAL-PATHNAMES with DEFSYSTEM, you must load it before compiling
or loading DEFSYSTEM.

12The latest version of Common Lisp tightened up the structure of pathnames, but we want to be compatible with
current Lisps.
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5.3. Using LOGICAL-PATHNAMES

This section discusses the basics of using LOGICAL-PATHNAMES, with an emphasis on
differences between this implementation and the X3J13 specification. See [7, section 23.1.5] for
detailed documentation on logical pathnames.

Most of the differences between this implementation and the X3J13 specification are either
enhancements or due to the problems of trying to ensure compatability with current Lisps.

For example, nearly every Lisp has a different representation for pathnames, since this was
rather loosely specified in [6]. In some Lisps pathnames are classes and in some they are
structures, and the slots of a pathname may have arbitrary types, especially the directory slot.
Depending on the Lisp, the directory slot may be a list, vector, simple-vector, string, keyword,
and/or nil. If a list or a vector, the items in the list may be strings, keywords (for canonical
types), or nil. The first item in the list may or may not be a special keyword (e.g., :relative
or :absolute), with different keywords in different Lisps (e.g., some substitute :root for

13:absolute).

5.3.1. Physical Host Types

Since the syntax of a pathname depends on the type of physical host, and such pathnames may
14be used in the translations, LOGICAL-PATHNAMES needs to be able to determine the type of the

physical host in order to translate a logical pathname. The function physical-host-type

provides a mechanism for determining the host type of a physical host.

13This will be remedied somewhat by X3J13’s June 1989 specification of the pathname component format for
structured directories [7, section 23.1.3]. However, current Lisps do not yet comply with this vote.

14The X3J13 specification states that the to-wildnames used in the translations can be anything coercible to a
pathname by application of the function pathname. However, this really leaves open the question of whether the
to-wildnames must be written only in the syntax of the Lisp implementation’s underlying operating system, or
whether the to-wildnames may be in the syntax of the target physical host. For example, if the following translations
are acceptable,

(setf (lp:physical-host-type "U") :unix)
(setf (lp:physical-host-type "MY-LISPM") :symbolics)
(setf (lp:logical-pathname-translations "prog")

’(("RELEASED;*.*.*" "U:/sys/bin/my-prog/*.*.*")
("EXPERIMENTAL;*.*.*" "MY-LISPM:>my-prog>*.*.*")))

then the Lisp implementation must be able to parse both UNIX and Symbolics pathnames. The second example in
Section 5.4 which is taken from [7] seems to indicate that this is the case. On the other hand, Steele’s example of a
UNIX system that doesn’t support :wild-inferiors would imply that the implementation of logical
pathnames is relying on the underlying operating system to handle the translation of wildcards, and therefore the
to-wildname must be acceptable to the underlying operating system.

In any event, since the intent is for LOGICAL-PATHNAMES to be portable, we parse several common pathname
syntax formats and rely on the underlying operating system as little as possible. As a result, we need a mechanism
for determining the host type of a physical host.
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physical-host-type (host) [Function]

Returns a keyword that represents the host type of the physical host host.

(setf physical-host-type) (type) [Setf Mapping]

Sets the host type of the physical host host to type.

The function load-physical-hostab may be used to set the host types for a collection of
physical hosts from a namespace table. The physical host namespace table is compatible with
both VMS and Symbolics host tables. The host table consists of a series of lines, one per host, in
the following format:

HOST NAME,CHAOS-#,STATUS,SYSTEM-TYPE,MACHINE-TYPE,NICKNAMES

Lines that don’t begin with "HOST" are ignored. NAME and SYSTEM-TYPE are required; all
others are optional (but delimiting commas are still required). SYSTEM-TYPE specifies the
operating system run on the host. Common values are: LISP, LISPM, UNIX, MACH, VMS, and
EXPLORER.

local-host-table "nethosts.txt" [Constant]

Default name of the local physical host namespace.

load-physical-hostab (&optional (local-hostab local-host-table)) [Function]

Loads the physical host namespace table. Can parse VMS and Symbolics host table
formats.

If the Lisp implementation has a different mechanism for determining the host type of a physical
host, the user should substitute a different definition for physical-host-type.

5.3.2. Logical Pathname Translations

The translations for a logical host are the main mechanism for transforming a logical pathname
into a physical pathname.

A translation is a list consisting of a from-wildname and a to-wildname. The former is a logical
pathname whose host is understood to be the logical host of the translation (i.e., the host of the
from-pathname need not be explicitly specified in the translation).  The latter is any pathname. If
the to-wildname is a logical pathname, translate-logical-pathname will retranslate the
result, repeatedly if necessary.

The translations are stored in a list according to host, and may be retrieved using the function
logical-pathname-translations and set using (setf

logical-pathname-translations). Since translations are searched in the order listed,
more specific from-wildnames must precede more general ones.

logical-pathname-translations (host) [Function]

If host has been defined as a logical pathname host name by setf of
logical-pathname-translations, this function returns the list of translations for
the specified host. Otherwise it signals an error.
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(setf logical-pathname-translations) (translations) [Setf Mapping]

(setf (logical-pathname-translations host) translations) sets the list of
translations for the logical pathname host to translations. If host is a string that has not
previously been used as a logical pathname host, a new logical pathname host is
defined; otherwise an existing host’s translations are replaced. Logical pathname host
names are compared with string-equal.

5.3.3. Loading Logical Pathname Translations

Translations for a logical host may be loaded using the function
load-logical-pathname-translations. If *logical-translations-directory* is
defined, load-logical-pathname-translations will check for an appropriately named
translations file in that directory.

*logical-translations-directory* () [Variable]

Directory where logical pathname translations are stored.

load-logical-pathname-translations (host) [Function]

Loads the logical pathname translations for host named host if the logical pathname
translations are not already defined. First checks for a file with the same name as the
host (lowercase) and type "translations" in the current directory, then the
translations directory. If it finds such a file it loads it and returns t, otherwise it signals
an error.

5.3.4. Additional Transformations

The function translate-logical-pathname may need to perform additional
transformations on the pathnames, besides those specified by the translations. For example, the
file system may require that pathnames include only uppercase letters, that hyphens not be used,
or that filenames be of limited length. In addition, the user may want file types to be translated to
local naming conventions. These additional transformations are implemented by translation rules
and canonical types.

5.3.4.1. Translation Rules

Translation rules are used to change the case of a pathname, to substitute one character for
another, and to replace particular directory components and file names. The macro
define-translation-rule is used to define translation rules for a particular host.

define-translation-rule (host-type &key case char-mappings [Macro]
component-mappings version-case type-case
name-case component-case)

Defines translation rules for hosts of type host-type. case may be :unchanged
(unchanged), nil (use default case), :upper, :lower, or :capitalize.
char-mappings is a list of character substitutions which occur in parallel.
component-mappings is a list of string substitutions.



50 Portable Utilities for Common Lisp

For example, the following rule changes VMS pathnames into uppercase and substitutes
underscores for hyphens.

(define-translation-rule :vms
:case :upper
:char-mappings ((#\- #\_)))

5.3.4.2. Canonical Types

Canonical types are used to translate surface forms according to local naming conventions. For
example, the filename extensions "lsp", "lisp" and "l" denote Lisp source files in different
Lisps. The canonical type :lisp expresses the commonality among these surface forms.

The define-canonical macro may be used to define new canonical types.  The functions
canonicalize and surface-form may be used to convert to and from canonical types. For
example, we may define :wild as the canonical type for "*" by evaluating

(define-canonical name :wild "*")
(define-canonical type :wild "*")
(define-canonical version :wild "*")

Then (canonicalize "*" :unix ’type) returns :wild. Note that we must define it once
for each component of a pathname, whether pathname-type, pathname-version, pathname-name,
or component of a directory.

define-canonical (level canonical default &body specs) [Macro]

Defines a new canonical type. level specifies whether it is a canonical type, version,
name, or component. default is a string containing the default surface type for any
kind of host not mentioned explicitly. The body contains a list of specs that define the
surface types that represent the new canonical type on each host. For systems with
more than one possible default surface form, the form that appears first becomes the
preferred form for the type.

surface-form (canonical host-type &optional (level (quote type))) [Function]

Given the canonical form of some canonical type, replaces it with the appropriate
surface form.

canonicalize (surface-form host-type &optional (level (quote type))) [Function]

Given the surface form of some canonical type, replaces it with the appropriate
canonical type.

5.3.5. Using Logical Pathnames

The LOGICAL-PATHNAMES system redefines several functions that use pathnames to first check
if the host is a logical host, and if so, apply the translations for the host using
translate-logical-pathname. The original function is then called on the translated
pathname. Accordingly, the user rarely has to manually translate a logical pathname to the
corresponding physical pathname, but may do so by calling translate-logical-pathname

directly.
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translate-logical-pathname (logical-pathname &optional [Function]
(output-format *translation-output*))

Translates a logical pathname to the corresponding physical pathname.  The pathname
argument is first coerced to a logical pathname, if possible. If the coerced argument is
a logical pathname, the first matching translation (according to
logical-pathname-match-p) of the logical pathname host is applied. If the result
is a physical pathname it is returned, otherwise this process is repeated until the result
is finally a physical pathname. If no translation matches a logical pathname, or the
resolution process loops, an error is signaled. translate-logical-pathname may
perform additional transformations, as specified by the translation rules and canonical
types.

logical-pathname-match-p (logical-pathname from-pathname) [Function]

Returns t if the logical pathname matches the test pathname.

5.3.6. LOGICAL-PATHNAMES Variables

The variables in this section control the operation of LOGICAL-PATHNAMES.

*translation-output* :namestring [Variable]

Specifies whether the output of translate-logical-pathname should be a namestring
(:namestring), a pathname made with lisp:make-pathname (:pathname), or as
is (:as-is).

*warn-about-host-type-collisions* t [Variable]

Warn user when a logical host type definition collides with a physical host type
definition.

5.4. Examples of Using LOGICAL-PATHNAMES

This section gives several examples of the use of logical pathnames.  They are taken from [7,
section 23.1.5.4].

The first example shows how to specify the root of the physical directory tree that corresponds to
the logical pathnames. Note that we have to declare the type of the physical host "MY-LISPM".

(setf (lp:physical-host-type "MY-LISPM") :symbolics)
(setf (lp:logical-pathname-translations "foo")

’(("**;*.*.*" "MY-LISPM:>library>foo>**>")))

When using a logical pathname, we can translate it with translate-logical-pathname.

<cl> (lp:translate-logical-pathname "foo:bar;baz;mum.quux.3" :namestring)
"MY-LISPM:>library>foo>bar>baz>mum.quux.3"

Many of the functions that use pathnames, such as load or delete-file, have been redefined
to use translate-logical-pathname if the host of the pathname is a logical host. Note how
translate-logical-pathname takes an additional argument (:namestring or
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15:pathname) to specify whether a namestring or actual pathname is returned.

The next example illustrates splitting a logical host across two physical hosts and translating the
16type .MAIL to .MBX. Since this UNIX file system doesn’t support :wild-inferiors in the

17pathname directory, each directory level must be translated individually.

(setf (lp:physical-host-type "U") :unix)
(setf (lp:physical-host-type "V") :vms)
(setf (lp:logical-pathname-translations "prog")

’(("RELEASED;*.*.*" "U:/sys/bin/my-prog/")
("RELEASED;*;*.*.*" "U:/sys/bin/my-prog/*/")
("EXPERIMENTAL;*.*.*" "U:/usr/Joe/development/prog/")
("EXPERIMENTAL;DOCUMENTATION;*.*.*" "V:SYS$DISK:[JOE.DOC]")
("EXPERIMENTAL;*;*.*.*" "U:/usr/Joe/development/prog/*/")
("MAIL;**;*.MAIL" "V:SYS$DISK:[JOE.MAIL.PROG...]*.MBX")))

Using these translations, we can obtain pathnames for either the UNIX or VMS physical hosts.

<cl> (lp:translate-logical-pathname "prog:mail;save;ideas.mail.3"
:namestring)

"V:SYS$DISK:[JOE.MAIL.PROG.SAVE]IDEAS.MBX.3"
<cl> (lp:translate-logical-pathname "prog:experimental;spreadsheet.c"

:namestring)
"U:/usr/Joe/development/prog/spreadsheet.c"

The last three examples demonstrate how logical pathnames may be used to shorten file names to
conform with a file system with limited-length file names.

(setf (lp:logical-pathname-translations "prog")
’(("CODE;*.*.*" "/lib/prog/")))

<cl> (lp:translate-logical-pathname "prog:code;documentation.lisp"
:namestring)

"/lib/prog/documentation.lisp"

(setf (lp:logical-pathname-translations "prog")
’(("CODE;DOCUMENTATION.*.*" "/lib/prog/docum.*")
("CODE;*.*.*" "/lib/prog/")))

<cl> (lp:translate-logical-pathname "prog:code;documentation.lisp"
:namestring)

"/lib/prog/docum.lisp"

(setf (lp:logical-pathname-translations "prog")
‘(("**;*.LISP.*" ,(lp:logical-pathname "PROG:**;*.L.*"))
("**;*.FASL.*" ,(lp:logical-pathname "PROG:**;*.B.*"))

15This is an extension to the X3J13 specification. When redefining functions that use pathnames, it was felt that
providing a translated namestring would be safer than providing an actual pathname.

16The type translations could also be accomplished by defining :mail as a canonical type,
(define-canonical type :mail "MAIL" (:vms "MBX")). This is an extension to the X3J13
specification.

17This is not strictly true of the LOGICAL-PATHNAMES system. Since LOGICAL-PATHNAMES parses physical
pathnames into a canonical format and can print pathnames in the formats of several Lisps, it may translate
:wild-inferiors itself instead of relying on the filesystem. This is an extension to the X3J13 specification.
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("CODE;DOCUMENTATION.*.*" "/lib/prog/documentatio.*")
("CODE;*.*.*" "/lib/prog/")))

<cl> (lp:translate-logical-pathname "prog:code;documentation.lisp"
:namestring)

"/lib/prog/documentatio.l"

5.5. Implementation Notes

The LOGICAL-PATHNAMES system can be divided into two major pieces.  The first is parsing and
generating the syntax of various pathname formats, and the second is the translation algorithm
itself.

The parsing of the various pathname formats is straightforward. All of the associated operations
involve breaking a string into two pieces around a character or string delimiter. The function
parse-generic-namestring extracts the host from the namestring and uses it to determine
the physical host type. Then do-generic-pathname-parse decides what parsing function to
call based on the host type. This is where one would add new pathname types to
LOGICAL-PATHNAMES. Most types of physical host have a similar pathname structure and may
be parsed using parse-generic-pathname.

The function physical-namestring returns the appropriate surface form of a
physical-pathname (the underlying structure that all pathnames are parsed into by
LOGICAL-PATHNAMES) corresponding to its host type.

The function translate-logical-pathname calls the function
resolve-logical-pathname to translate the logical pathname into a physical pathname.
resolve-logical-pathname calls map-logical-pathname to retrieve and apply a single
translation pair to the logical pathname. If the result is a physical pathname it is returned. If the
result is a logical pathname, resolve-logical-pathname calls itself recursively. A table of
previously seen logical pathnames, *circularity-check-table*, is maintained to prevent
infinite loops. resolve-logical-pathname calls check-logical-pathname to check and
update this table, signalling an error if a logical pathname is repeated.

The function map-logical-pathname iterates down the list of translation pairs for the logical
host, stopping with the first translation pair whose from-wildname matches the logical pathname
according to logical-pathname-match-p and returning the result of
translate-logical-pathname-aux being called on the logical pathname and translation
pair. translate-logical-pathname-aux uses the functions map-directories and
map-wildcard-word to do the translation.

map-wildcard-word calls map-strings to transform individual strings. map-strings

translates a string from the source wild-string to the target wild-string. It assumes that wildcards
("*") in the source wild-string will correspond to wildcards in the target wild-string, and replaces
wildcards in the target pattern with the string’s contents as specified by the corresponding



54 Portable Utilities for Common Lisp

wildcard in the source wild-string. Literal strings are copied as is from source wild-string to
target wild-string. When not enough matching wildcards are available due to too few asterisks in
the source wild-string, the null string is used as the matching value for any wildcards remaining
in the target wild-string. When the source wild-string has too many wildcards, the first extra
wildcard and everything following it are ignored. The operation of map-directories with
respect to the :wild and :wild-inferiors wildcards is analogous.

The function append-logical-directories is provided to tack a subdirectory onto a logical
pathname. It is used by the DEFSYSTEM program.
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6. SOURCE-COMPARE: A "diff" for Lisp

The SOURCE-COMPARE system is a portable tool for comparing Lisp source files. While it may
be used to find the differences between arbitrary text files, it has several features customized for
Lisp, such as the ability to ignore Lisp comments. It uses a greedy algorithm for longest common
substring that may not necessarily find the longest common substring, but which runs in average
case linear time and works well in practice.

6.1. Overview

SOURCE-COMPARE is a portable Common Lisp tool for comparing Lisp source files, similar in
functionality to the UNIX program "diff".  Like diff it can ignore case, whitespace, and blank
lines. In addition, it can also correctly ignore certain classes of Lisp comments. It uses a different
algorithm from diff, and runs in average-case O(m+n) time, where m and n are the lengths in
lines of the files being compared.

The algorithm is a greedy variation on the usual dynamic programming implementation of the
algorithm for finding the longest common substring of two strings. When comparing two files,
SOURCE-COMPARE tries to maintain the two files in sync, and when a difference is encountered,
uses the closest next match, where distance is minimized according to some metric. Since this is
a greedy algorithm, it is possible that it will not find the optimum global match sequence.
However, the suboptimal case hardly ever occurs in practice, and when it does occur, it doesn’t
make much of a difference for comparing different versions of source files.

The metrics should be chosen so that minimizing distance is equivalent to minimizing the edits
necessary to bring the two files into agreement. Two such metrics include

• x + y, the total length of additions and deletions from both files

• max(x,y), the length of the largest addition or deletion from either file
where x is a line number from the first file and y is a line number from the second file. Both of
these metrics are appropriate to the problem, since the former tries to minimize the total changes
and the latter gives a preference to small changes.

While neither metric actually builds the dynamic programming table, they can be considered as
exploring the table in successive rectilinear and diagonal layers, respectively. The metrics are
illustrated in Figure 6-1. Both metrics have been implemented.

If the two files have no lines in common, we get a worst-case running time of O (mn), where m is
the length in lines of the first file and n the length in lines of the second file. In practice,

18however, the algorithm seems to always run in linear time. We show in Section 6.4 that the
algorithm has an average case running time of O(m+n). The diagonal metric seems to run

18Presumably because the files one compares tend to have many lines in common.
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minimizing max(x,y) minimizing x + y

Figure 6-1: Two Greedy Metrics

slightly faster and use less space than the rectilinear metric, so it has been made the default.

6.2. Using SOURCE-COMPARE

This section describes all of the basic SOURCE-COMPARE commands and the variables which
control their behavior.

6.2.1. Comparing Files

source-compare is the main function for comparing files. The variable *greedy-metric*

contains the name of the greedy metric used to calculate the closest next match.

source-compare (filename-1 filename-2 &key [Function]
(output-stream *standard-output*)
(ignore-case *ignore-case*)
(ignore-whitespace *ignore-whitespace*)
(ignore-comments *ignore-comments*)
(ignore-blank-lines *ignore-blank-lines*)
(print-context *print-context*)
(print-fancy-header *print-fancy-header*))

Compares the contents of the two files, outputting a report of what lines must be
changed to bring the files into agreement. The report is similar to that generated by
‘diff’: Lines of the forms

n1 a n3,n4
n1,n2 d n3
n1,n2 c n3,n4

(where a is for add, d is for delete, and c is for change) are followed by the lines
affected in the first (left) file flagged by ’<’ then all the lines affected in the second
(right) file flagged by ’>’. If print-context is t, will print out some additional
contextual information, such as additional lines before and after the affected text and
the definition most likely to be affected by the changes. If print-fancy-header is t,
prints the file-author and file-write-date in the header. The report is output
to output-stream. Returns t if the files were "identical", nil otherwise. If ignore-case
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is t, uses a case insensitive comparison.  If ignore-whitespace is t, ignores spaces and
tabs that occur at the beginning of the line. If ignore-comments is t, tries to ignore
comments at the end of the line. If *dont-ignore-major-comments* is t, will
also ignore major comments (comments with a semicolon as the first character of the
line). If ignore-blank-lines is t, will ignore blank lines in both files, including lines
that are effectively blank because of ignored comments.

*greedy-metric* (quote find-next-diagonal-match) [Variable]

Variable containing the name of the greedy matching function used to minimize
distance to the next match:

• find-next-rectilinear-match minimizes max(x,y)

• find-next-diagonal-match minimizes x+y
where x is a line number from the first file and y is a line number from the second file.

find-next-diagonal-match (file-1 start-1 file-2 start-2) [Function]

First difference detected, look ahead for a match [x+y version].

find-next-rectilinear-match (file-1 start-1 file-2 start-2) [Function]

First difference detected, look ahead for a match [max(x,y) version].

6.2.2. SOURCE-COMPARE Variables

The following four variables control the appearance of the report on the differences between the
files.

*print-context* t [Variable]

If t, we print the context marking lines that occur before the difference.

*print-fancy-header* () [Variable]

If t, prints a fancy header instead of the simple one.

*context-lines-before-difference* 0 [Variable]

Number of lines of context to print before a difference.

*context-lines-after-difference* 1 [Variable]

Number of lines of context to print after a difference.

The next variable controls whether small changes close together are merged into a larger group.

*minimum-match-length* 2 [Variable]

The minimum number of lines that must match for it to be considered a match. This
has the effect of collecting lots of adjacent small differences together into one larger
difference.

The next five variables control sensitivity to whitespace, case, blank lines, and comments.

*ignore-whitespace* t [Variable]

If t, will ignore spaces and tabs that occur at the beginning of the line before other text
appears and at the end of the line after the last text has appeared.
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*ignore-case* t [Variable]

If t, uses a case insensitive comparison. Otherwise uses a case sensitive comparison.

*ignore-blank-lines* t [Variable]

If t, will ignore blank lines when doing the comparison.

*ignore-comments* t [Variable]

If t, will try to ignore comments of the semicolon variety when comparing lines. Tries
to be rather intelligent about the context to avoid ignoring something that really isn’t a
comment. For example, semicolons appearing within strings, even multi-line strings,
are not considered comment characters. Uses the following heuristics to decide if a
semicolon is a comment character or not:

• Slashification (\) works inside strings ("foo\"bar") and symbol names
(|foo\|bar|), but not balanced comments (#|foobar\|#).

• Balanced comments do not work inside strings ("#|") or symbol names.

• Strings do not work inside balanced comments (#|"|#)

• Regular semicolon comments do not work inside strings, symbol names, or
balanced comments (#|foo;bar|#).

All this is necessary for it to correctly identify when a semicolon indicates the
beginning of a comment. Conceivably we should consider a semicolon as a comment
when it is inside a balanced comment which isn’t terminated from the semicolon to the
end of the line. However, besides being complicated and time-consuming to
implement, the Lisp interpreter doesn’t treat it this way, and we like to err on the side
of caution. Anyway, changes in the comments within commented out regions of code
is worth knowing about.

*dont-ignore-major-comments* () [Variable]

If t, ignoring comments does not ignore comments with a semicolon as the first
character of the line.

6.3. Example of Using SOURCE-COMPARE

SOURCE-COMPARE is loaded into the "SOURCE-COMPARE" package, so we prefix the
functions and variables with a "SOURCE-COMPARE:" or the nickname "SC:".

The following example shows what the output of the source comparison program looks like.
<cl> (SC:source-compare "~/old/glinda.lisp" "glinda.lisp" :ignore-comments t)

===========================================================================
Source compare of

~/old/glinda.lisp
(written by mkant, FRI 20-JUL-90 11:59:05)

with
glinda.lisp
(written by mkant, THU 15-NOV-90 15:53:44)

===========================================================================
46c46
**** File ~/old/glinda.lisp, After "(defvar *glinda-version* nil)"
< (setq *glinda-version*  "6/19/90")



SOURCE-COMPARE: A "diff" for Lisp 59

< (format t "~%Using Glinda Generation, Generator Version ~A." *glinda-version*)
---
**** File glinda.lisp, After "(defvar *glinda-version* nil)"
> (setq *glinda-version*  "11/13/90")
> (format t "~%Using Glinda Generation, Generator Version ~A." *glinda-version*)
===========================================================================
550c550
**** File ~/old/glinda.lisp, After "(defun constraint-match (cvalue gvalue)"
< ((or (symbolp cvalue) (numberp cvalue))
< (ontological-supertypep cvalue gvalue))
---
**** File glinda.lisp, After "(defun constraint-match (cvalue gvalue)"
> ((or (symbolp cvalue) (stringp cvalue)(numberp cvalue))
> (ontological-supertypep cvalue gvalue))
===========================================================================
562a563,567
**** File ~/old/glinda.lisp, After "(defun constraint-match (cvalue gvalue)"
< (defun find-organization (head type features &optional group)
---
**** File glinda.lisp, After "(defun constraint-match (cvalue gvalue)"
> (defvar *which-rule-to-choose* :random ; &new11/13/90
> "If find-rule returns more than one rule, specifies which rule we use.
> :first -- just take the first rule.
> :random -- pick a rule at random.")
>
> (defun find-organization (head type features &optional group) ; &mod11/13/90
===========================================================================
565c570,580
**** File ~/old/glinda.lisp, After "(defun find-organization (head type features &op
< (car (find-rule (lexical-organization category type) features group))))
<
---
**** File glinda.lisp, After "(defun find-organization (head type features &optional
> (let ((rules (find-rule (lexical-organization category type)
> features group)))
> (case *which-rule-to-choose*
> (:first (car rules))
> (:random (choose-random rules))))))
>
> (defun choose-random (list) ; &new11/13/90
> "Chooses a random element of the list."
> (if (null (cdr list))
> (car list)
> (nth (random (length list)) list)))
>
===========================================================================
Done.

6.4. Proof of Average Case Linear Running Time

We prove that SOURCE-COMPARE runs in average case linear time.

Let a and b be the ith distances between matches in files A and B, respectively. Let k, 1≤k≤n,i i
k kbe the number of matches. Then a = m and b = n, where m is the length in lines of file∑ ∑i=1 i=1i i

A and n is the corresponding length for file B. The running time of the algorithm is proportional
kto a b .∑i=1 i i

Since a and b are positive integers, it follows thati i
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k k k

a b ≤ a b = m n∑ ∑ ∑i i i i
i=1 i=1 i=1

and hence the worst-case running time is O(mn). But the worst-case running time is atypical of
the average-case behavior. As we shall show, the average-case running time is O(m+n).

19Combining the Cauchy-Schwartz inequality

2 2a b ≤√ (a ) √ (b )∑ ∑ ∑i i i i
i i i

with the arithmetic-mean geometric-mean inequality

x+y√x⋅y ≤
2

yields
2 2(a ) + (b )∑ ∑i i

i ia b ≤∑ i i 2i

k 2So it suffices to consider the average value of (r ) over all possible ordered sequences r of∑i=1 i i
kpositive integers for k =1 to n such that r = n. Such a sequence is called a composition of n∑i=1 i

20into k distinct parts.

To compute this average we sum the squares of the parts of the compositions of n, and divide by
n−1the total number of such compositions. We shall show that the former is equal to (3n−4)2 + 2

−(n−2)n−1and the latter to 2 , and hence that the average is equal to 3n−4+2 .

The number of occurrences of part i in the k-compositions of n is the same as the number of
(k−1)-compositions of n−i multiplied by k, the number of positions in which i could be inserted

n−i−1to form a k-composition of n. To see that the former is , consider n−i dots separated by( )k−2

n−i−1(n−i)−1 spaces, and choose (k−1)−1 of them to form k−1 integers. This gives us k( )k−2

occurrences of i in the k-compositions of n.

n n k n−i−1 n−i−1 n−i−2 n−i−1Thus f (n,k)= i j . Substituting j =(n−i−1) +2 yields∑ ∑ ( ) ( ) ( ) ( )i=1 j=1 j−2 j−2 j−3 j−2

→ → → → → → → → → →19One sentence proof: Given vectors a and b , a ⋅b = ||a || ||b ||cos θ ≤ ||a || ||b ||, with equality when a and b are
parallel (cos θ= 1).

20The word distinct here signifies that permutations of a sequence are not considered identical -- the cells are
distinct. A composition of n is an ordered sequence of positive integers whose sum is equal to n. The elements of
the sequence are called parts. A composition with exactly k parts is called a k-composition. For example, there are
sixteen compositions of 5:

(5)
(1,4) (4,1) (3,2) (2,3)
(1,1,3) (1,3,1) (3,1,1) (1,2,2) (2,1,2) (2,2,1)
(1,1,1,2) (1,1,2,1) (1,2,1,1) (2,1,1,1)
(1,1,1,1,1)
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n−2 n
k n−i−2 k n−if (n,k) = i (n−i−1) 2 + i 2∑ ∑

i=1 i=1

.

For k=2, substituting using j=n+1−i and using the identities
n

i n+12 = 2 −2∑
i=1
n

i n+1i 2 = (n−1) 2 +2∑
i=1
n

2 i 2 n+1i 2 = (n −2n+3) 2 −6∑
i=1
n

3 i 3 2 n+1i 2 = (n −3n +9n−13) 2 +26∑
i=1

n−1yields (3n−4)2 + 2 as desired.

n−1Note that since there are k-compositions of n, the total number of compositions is( )k−1
n n−1 n−1=2 .∑ ( )k=1 k−1

Thus the average value of the sum of the squares of the parts of the compositions of n is equal to
−(n−2)3n−4+2 . Thus

2 2(a ) + (b )∑ ∑i i 3 (n + m)i i −(n−1) −(m−1)a b ≤ = −4+2 +2∑ i i 2 2i

on average, and hence the average case running time is O (m+n).

6.5. Implementation Notes

SOURCE-COMPARE has four major pieces: line comparison, the outer iteration loop that keeps the
files in sync, the inner iteration loops that find the next match, and the report generator.

6.5.0.1. Line Comparison

The function compare-lines is used to compare a line from each file. It uses line-start to
find the positions in each line where it should begin comparing them, and line-end to find the
positions where it should stop comparing them. line-start and line-end use
first-non-whitespace-char to find the position in the line where the whitespace ends and
begins, respectively. line-end calls get-comment-position to find the comment position
for the current line, if any, given the cached position information for the previous line.
get-comment-position calls find-comment-position to actually determine where in the
line the comment begins, if at all.
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compare-lines (file-1 line-no-1 file-2 line-no-2) [Function]

Intelligently compare two lines. If *ignore-case* is t, uses case-insensitive
comparison. If *ignore-whitespace* is t, ignores spaces and tabs at the beginning
of the line. If *ignore-comments* is t, tries to ignore comments at the end of the
line.

line-end (line file line-no &optional (start 0) end) [Function]

Returns the position of where in line to end the comparison.  If the comparison should
end at the end of the line, returns nil. start, if supplied, is where to start looking for
the end.

line-start (line &optional (start 0)) [Function]

Returns the position of where in line to start the comparison.

first-non-whitespace-char (line &key from-end (start 0) end) [Function]

Finds the position of the first character of line which is neither a space or a tab.
Returns nil if no character found.

get-comment-position (line file line-no &optional (start 0) end) [Function]

Returns the position of the beginning of the semicolon variety comment on this line.

The function find-comment-position has been carefully constructed to return the correct
position of the comment character, despite the many interactions of slashification, delimited
strings, delimited symbol names, balanced comments, and regular comments. For example, a
semicolon appearing inside a documentation string should not be counted as the beginning of a
comment. As another example, a slashified semicolon should not count as a comment unless the
slash is itself slashified.

find-comment-position (line &optional (start 0) end &key [Function]
inside-string (splat-bar-count 0))

Tries to find the position of the beginning of the comment at the end of line, if there is
one. start and end delimit the search. end defaults to the end of the line. If
inside-string is non-nil, it is assumed that we’re inside a string before we began (if so,
inside-string is set to the character which will terminate the string (#\" or #\|).
splat-bar-count is the number of unbalanced begin balanced comments (#|) that have
been seen so far.

6.5.0.2. Outer Iteration Loop

The function source-compare-internal maintains indices into both files, always positioned
so that they correspond to a match. If the next pair of lines are a mismatch, it calls the current
metric (*greedy-metric*) to find the indices of the lines where the files match up again. It
then generates a report for the mismatch using print-differences, and continues from
where they match until it reaches the end of the files.
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6.5.0.3. Finding the Next Match

The function find-next-diagonal-match explores successive diagonals of the dynamic
programming table in order of increasing sum x+y. It calls find-diagonal-match to explore
the diagonal from top to bottom, possibly truncating it at the ends of the table.

The function find-next-rectilinear-match explores successive rectangular layers of the
dynamic programming table, calling find-linear-match alternately to explore horizontal and
vertical layers.

Both find-next-diagonal-match and find-next-rectilinear-match call
found-match to verify that a match has been found by checking that the next few lines (up to
*minimum-match-length*) are identical. If found-match returns nil, this has the effect of
clumping together differences separated only by a few matching lines.  If a definition changed
between the files, it is sometimes preferable to be given the entire definition as a change than a
lot of small slices of the definition.

6.5.0.4. Report Generator

The function print-differences prints the differences in the two files. It prints a one line
summary of the change in a format similar to diff, giving the ranges of lines from each file, and
using a single letter (a, d, or c) to indicate additions, deletions and changes, respectively. It then
prints out the appropriate section of each file, possibly with a few lines before and after to give
context. Also for context, it hunts backwards in the file until it finds the nearest line that begins a
definition (left parenthesis on column zero) and prints that line.
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7. USER-MANUAL: Extracting Program Documentation

The USER-MANUAL program is a portable tool for extracting documentation from Lisp source
21code. It helps create user guides and program documentation.

7.1. Overview

USER-MANUAL reads in the source code from a Lisp program, extracts the function name,
argument list, and documentation string, and formats it either for use as a Lisp comment or for
use in a Scribe document.

USER-MANUAL can format documentation for several types of definition forms, including
functions, macros, variable definitions, defstructs, class and method definitions, and defsetf
forms. It is easy to add documentation handlers for new types of definition forms.

7.2. Using USER-MANUAL

The function create-user-manual is the main routine for generating the documentation for
the definitions of a program.

create-user-manual (filename &key (output-format (quote text)) [Function]
(output-stream *standard-output*))

Automatically creates a user manual for the functions in a file by collecting the
documentation strings and argument lists of the functions and formatting the output
nicely. Returns a list of the definition types of the forms it couldn’t handle.
output-format may be either ’text or ’scribe.

7.3. An Example of Using USER-MANUAL

The definition entry in Section 7.2 was generated by evaluating

(create-user-manual "user-manual.lisp" :output-format ’scribe)

The following is the same entry, but in ’text format:
;;;
;;; CREATE-USER-MANUAL (filename &key (output-format (quote text)) [FUNCTION]
;;; (output-stream *standard-output*))
;;; Automatically creates a user manual for the functions in a file by
;;; collecting the documentation strings and argument lists of the
;;; functions and formatting the output nicely. Returns a list of the
;;; definition types of the forms it couldn’t handle. Output-format
;;; may be either ’TEXT or ’SCRIBE.
;;;

21The documentation in this user guide was created using the USER-MANUAL program.
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7.4. Extending USER-MANUAL

The macro define-doc-handler is used to define a new documentation handler. For
example, the documentation handler for defvar was defined as follows:

(define-doc-handler defvar (form)
"variable"
(values (second form)

(third form)
(fourth form)))

Definitions with more complex syntax, such as defmethod have correspondingly more complex
documentation handlers.

define-doc-handler (definer arglist description &body body) [Macro]

Defines a new documentation handler. definer is the car of the definition form handled
(e.g., defun), description is a one-word string equivalent of definer (e.g., "function"),
and arglist and body together define a function that takes the form as input and value-
returns the name, argument-list, documentation string, and a list of any qualifiers of the
form.

7.5. Implementation Notes

The only complicated aspect of USER-MANUAL is the formatting of the argument lists. If Waters’
XP Lisp pretty printer [9] [10] is present in the Lisp environment USER-MANUAL uses it to
format the argument lists. If not, USER-MANUAL uses several heuristics for formating the
argument lists nicely.

The function split-string is used to break up both long argument lists and lines of
documentation that are too wide. It calls the functions lambda-list-keyword-position,
split-point, balanced-parenthesis-position, and parse-with-delimiter. The
basic idea is to split the argument list so that it fits on the line, and walk backwards to the first
balanced parenthesis on the line, unless it’s the first character on the line. Then it checks whether
the previous "word" is a lambda-list keyword, and if so splits the argument list just before the
keyword, otherwise at the balanced parenthesis position.

split-string (string width &optional arglistp filled [Function]
(trim-whitespace t))

Splits a string into a list of strings, each of which is shorter than the specified width.
Tries to be intelligent about where to split the string if it is an argument list. If filled is
t, tries to fill out the strings as much as possible. This function is used to break up long
argument lists nicely, and to break up wide lines of documentation nicely.

split-point (string max-length &optional arglistp filled) [Function]

Finds an appropriate point to break the string at given a target length. If arglistp is t,
tries to find an intelligent position to break the string. If filled is t, tries to fill out the
string as much as possible.
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lambda-list-keyword-position (string &optional end trailer-only) [Function]

If the previous symbol is a lambda-list keyword, returns its position. Otherwise returns
end.

balanced-parenthesis-position (string &optional end) [Function]

Finds the position of the left parenthesis which is closest to end but leaves the prefix of
the string with balanced parentheses or at most one unbalanced left parenthesis.

parse-with-delimiter (line &optional (delim #\newline)) [Function]

Breaks line into a list of strings, using delim as a breaking point.
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Appendix I
Test Source File for XREF

The following is a short nonsense program used to test XREF and produce the output in Section
2.4. It may be found in the file xref-test.lisp.

(defun top-level ()
"Top level function with null lambda list."
(let* ((input (read))

(key (car input)))
(declare (special key))
(case key
(quit
(return (values (frob (rest input)) ’quit)))
(otherwise
(cond ((member key ’(foo bar baz))

(barf key (rest input)))
(t
(frowz (rest input) :key key)))))))

(defun frob (items)
"Here we test mapcar."
(mapcar #’frob-item items))

(defun frob-item (item)
"Here we test apply."
(apply #’append-frobs item))

(defun barf (key &optional items)
"Optional args test."
(cons key (frowz items)))

(defun frowz (items &key key)
"Keyword args test."
(dolist (item items)
(let ((frowz

(if (eq key ’quit)
(intern
(format nil "FOO~A"

(round (+ (length (process-keys items))
10))) ’keyword)

(snarf-item item))))
(when (string-equal frowz (process-key key))
(setf (node-position key) 12)
(return frowz)))))

(defun process-key (key)
(funcall #’symbol-name-key key))
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Appendix II
Extensions to Common Lisp

In the course of writing these utilities, often there were implementation-dependent functions
which represent functionality that is missing from Common Lisp. This appendix lists some of
those functions.

arglist (symbol) [Function]

Returns the argument list of symbol.

append-directories (absolute-pathname relative-pathname) [Function]

Tacks a subdirectory onto a directory. Returns the pathname absolute-pathname with
the components of the directory of relative-pathname appended onto the end of its
directory.

space () [Function]

Value returns three numbers relating to memory usage. The first is the number of bytes
of dynamic storage currently allocated. The second is the amount of space remaining.
The third is the total number of bytes consed since time zero (alternately, since the first
time space was called, with the first time returning zero).

The definition of room is inadequate because it is implementation dependent and lacks
a convenient interface for programs. Having to call parse-integer on the output of
(room nil) is unacceptable.

The macro defsetf currently restricts the setf method to a single store variable. If we modify
defsetf to allow multiple store variables, with assignment via multiple values (e.g., (setf
(frob x) (values 1 2))), then get-setf-method-multiple-values can be removed
from the language.

Some Lisps buffer the input lines at read-eval-print loop prompt. This interferes with the desired
operation of listen and read-char-no-hang, since they should not have to wait until the
user hits a carriage return and linefeed to get their input. Perhaps Common Lisp should include a
with-unbuffered-reading macro. This macro could put the tty in RAW or CBREAK mode
to allow unbuffered reading, and back to COOKED mode afterwards.

Common Lisp currently avoids discussing memory management and garbage collection. A set of
naming conventions for the basic gc functions for Lisps that involve garbage collection would be
helpful.

Common Lisp should specify more of the keywords that should appear in the *features* list. For
example, each Lisp implementation should have symbols that distinguish it from other Lisps and
distinguish major versions of the implementation. Major subsystems such as CLOS, LOOP,
SERIES, etc., should have associated keywords.

Miscellaneous minor functions:

• firstn returns the list containing the first n elements of its argument.
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• subst:sublis::substitute:? Add a definition parallel-substitute for performing
many substitutions on a sequence in parallel.

• Equivalents of last and butlast for sequences.

• userid and username return the user’s id and name, if available.

• copy-file to make a copy of a file.

• create-directory to create a new directory.

It is unfortunate that a portable DEFSYSTEM facility must be file-based. Nothing in the definition
of the Lisp language requires that definitions be stored in files, but there seems to be an implicit
assumption that this is so. In Common Lisp one may either compile an entire file or an individual
definition, but there is no mechanism for compiling a single definition and saving its compiled
code in a file.  This imposes artificial constraints on a system like DEFSYSTEM. If instead Lisp
definitions and compiled code were stored in a database, one could still edit the definitions using
a text editor, but the compiler would be able to ensure that the compiled code in the database is
up to date on a package by package (or even defun by defun) basis.
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