Portable Utilitiesfor Common Lisp
User Guide & Implementation Notes

Mark Kantrowitz
May 1991
CMU-CS-91-143

School of Computer Science
Cargnegie Mellon University
Pittsburgh, PA 15213-3890
mkant+ @cs.cmu.edu

ADbstract

One of the most frequent complaints in the Lisp community is the lack of availability of
programming tools. This document describes portable implementations of six tools for the
development and maintenance of Common Lisp programs. XREF, a Lisp code cross referencer;
METERING, a timing and consing code profiler; DEFSYSTEM, a "make' for Lisp;
LOGICAL-PATHNAMES, portable pathnames for Lisp; SOURCE-COMPARE, a "diff" for Lisp; and
USER-MANUAL, a program which extracts documentation from Lisp programs. All six tools are
publicly available via anonymous ftp.

This research was sponsored in part by a Hertz Foundation Research Fellowship Grant. The author is supported by a
National Science Foundation (NSF) Graduate Fellowship.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Hertz Foundation or the NSF.

Keywords: programming environments, Common Lisp, program maintenance, programming tools, cross
referencing, code profiling, source comparison, system definition, logical pathnames.

Introduction 1

1. Introduction

This document describes six portable systems tools which aid programmers in the development
and maintenance of Common Lisp programs.

1.1. Why Portable Utilities?

One of the most frequent complaints in the Lisp community is the lack of general availability of
tools for system development and management. While some tools are available in particular Lisp
environments (most notably on dedicated Lisp Machines, such as Symbolics and Xerox), none
are available in every version of Lisp, and those that are available are often incompatible.

For example, many Lisps provide some sort of system definition tool, commonly called
‘defsystem’, but most such tools are incompatible. Some Lisps use simple modules[6, pp.
188-192], perhaps augmented with search lists, while others use a more complicated procedural
system-construction tool [3, 4]. Even those with similar functionality have a different definition
syntax. Since the tools are often proprietary, one is constrained either to using a particular Lisp
or to writing separate system definitions for each and every tool. With today’s heterogeneous
programming environments, programmers often use different Lisps on different machines, or
even on the same machine, so the former is not a viable option and the latter is a magor headache
for the program maintainer.

A primary goal of this manual and associated software is to address this issue by providing
portable implementations of the most useful utilities. All of the utilities are implemented in
Common Lispl and any Lisp implementation-dependent changes are clearly noted, with
reasonable defaults if the changes not supplied. Porting the tools to other Lisps is therefore quite
painless. Since the tools are publicly available for no fee, one may simply use the tools in
whichever Lisps one desires.

1.2. Design Philosophy

Although system development tools can greatly improve programmer productivity, not every
programmer has the time and opportunity to write such tools from scratch. On the other hand,
given source code for a tool that is close to what they want, most programmers can quickly and
easily modify it to meet their needs. Likewise, the programmer who encounters a bug in the tool
can fix it himself.

If the incremental enhancements and changes made by the users are then propagated back to the

IThe utilities have all been tested in Franz Allegro Common Lisp (3.0.1 Decstation 3100), Macintosh Allegro
Common Lisp (1.3.2), and CMU Common Lisp (old and new compilers). In addition, many of the utilities have
been tested in other Lisps, including Lucid Common Lisp (2.1 Vax, 3.0, and 4.0), Symbolics Common Lisp (7.2 and
8.0), Ibuki Common Lisp, and VAXLisp.

2 Portable Utilities for Common Lisp

original source, the improvements can snowball, yielding a better program than any individual
programmer or team of programmers could have written. Thisis especially true of programs with
alarge community of users, such as programming tools. The key isto get the ball rolling.

Thus our philosophy in designing and implementing these utilities has been to concentrate on
basic functionality, and rely on the users to add the bells and whistles they want. To provide a
good starting point for new features, the program must be written in as generic and portable a
manner as possible. Accordingly, we wrote these utilities in "pure” Common Lisp, segregating
any implementation-dependent functions, and focused on providing a clean and efficient
implementation of the core of the programs.

Even though most of the tools have been available for much less than a year, they have aready
benefited from this approach. Users have helped port the utilities to other Lisps (often by
providing just the implementation-dependent functions), fixed bugs, added features, and made
suggestions for other improvements. The tools have become quite popular, and are currently
being used by programmers at over 100 sites that we know of.

1.3. Overview
In the following chapters we describe each of the following utilitiesin detail:

XREF A portable cross referencing tool for determining callers of functions and variables in
Lisp programs. Useful for mapping out the structure of a program. Similar to the
Symbolics Who-Calls database [3] [8, pp. 183-185] and the Xerox Masterscope program
[2]. Includes an interface to Joe Bates' PostScript DAG grapher for drawing call graphs.

METERING
A portable code profiling tool, for gathering timing and consing statistics while a
program is running. Monitors the use of functions and macros, calculating the number of
calls, CPU time, and storage use. Inclusive and exclusive function call statistics. The
METERING system is based on the MONITOR program written by Chris McConnell and the
PROFILE program written by Skef Wholey and Rob MacL achlan, with several extensions.

DEFSY STEM
A portable system definition facility (a"make" for Lisp), similar to the Symbolics system
construction tool [3] [4]. Compiles and loads files according to a user-defined file-
dependency graph, while trying to minimize extraneous compilations and loads. Includes
an interface to LOGICAL-PATHNAMES. XREF includes a tool to assist in building a system
definition for a set of files.

LOGICAL-PATHNAMES
A portable implementation of the X3J13 June 1989 specification for logical pathnames,
as documented in [7, section 23.1.5]. Useful for portable pathname reference, cross-host
access, and pathname aliasing.

SOURCE-COMPARE
A portable tool for finding the differences between source files (a "diff" for Lisp). While
it may be used to compare arbitrary text files, it has several features specialized for Lisp,
such as the ability to ignore Lisp comments. It uses a greedy algorithm for longest
common substring that may not necessarily find the longest common substring, but which

Introduction 3

runsin average case linear time and works well in practice.

USER-MANUAL
A portable program for extracting documentation from Lisp source code. Helps create
user guides and program documentation.

This manual describes only the programming utilities. The collection also includes other useful
Lisp programs, such as a regular-expression style matcher and FrameWork, a generic frame-
based knowledge representation system, as well as a variety of text files of interest to Lisp
programmers.

Within each chapter we first give an overview of the basic features of the utility, including basic
commands and variables. Next, we describe how to load the software, with a particular emphasis
on what implementation-dependent changes may be required. Then come usage notes, if any.
After that follows a few examples of how to use the programs and sample output. Finaly, we
conclude each chapter with a discussion of the implementation, which should help users modify
and extend the software.

1.4. Obtaining the Utilities

The utilities are available by anonymous ftp from CMU:
e ftptoa.gp.cs. crmu. edu [128.2.242.7] or any other CMU CS machine.

» The directory /afs/cs.cnu.edu/user/ nkant/Public/Lisp-Wilities/
contains the files.

* cd to this directory in one fell swoop. Do not try to cd or | s any intermediate
directories, since the CMU security mechanisms prevent access to other directories
from an anonymous ftp.

* Use | s to see what files are available. For users accessing the directory via an
anonymous ftp mail server, the file READVE contains a current listing and
description of the files in the directory. The file UPDATES describes recent updates
to the released versions of the software in the directory. The file COPYI NG describes
the general license agreement and lack of warranty.

Of course, if your site runs the Andrew File System? and you have afs access, you can just cd to
the directory and copy the files directly.

The following is an example of using ftp to retrieve the software:

% ftp a.gp.cs.cmu. edu
Connected to A GP.CS. CMJ. EDU.

2Currently Boston University, Carnegie Mellon University, Chalmers University of Technology, Dartmouth, HP
Cupertino, Idaho National Engineering Lab, MIT, Mt. Xinu, Naval Research Lab, NIH, Open Software Foundation,
Pittsburgh Supercomputing Center, Rensselaer Polytechnic Ingtitute, Stanford, Superconducting Supercollider Lab,
Transarc, Unisys, University of Arizona, University of Michigan, University of Notre Dame, University of
Pittsburgh, and University of Southern California/l Sl.

4 Portable Utilities for Common Lisp

220 A GP.Cs. CMJ. EDU FTP server (Version 4.105 of 10-Jul-90 12:07) ready.
Nane (a.gp.cs.cnu. edu: nkant): anonynous
331 Guest login ok, send ident as password.
Passwor d:
230 Filenanes can not have '/..’ in them
ftp> cd /afs/cs.cnu. edu/ user/ nkant/Public/Lisp-Uilities
250 Directory path set to /afs/cs.cnu. edu/user/nkant/Public/Lisp-Uilities.
ftp>Is
200 PORT conmand successf ul
150 Opening data connection for Is (128.2.220.10, 3107).
COPYI NG
READVE
UPDATES
c-lisp-interfaces.text
cl-x-lisp-interfaces.text
defsystem i sp
[...rest of listing deleted...]
226 Transfer conplete.
430 bytes received in 0.23 seconds (1.8 Kbytes/s)

The following table lists the relevant files, their length in lines of Lisp (excluding comments),
and their sizein bytes:

File lines| bytes
defsystem.lisp 1391| 88k
framework.lisp 1666 | 125k
logical-pathnames.lisp 1511 77k
matcher.lisp 113| 15k
metering.lisp 714| 45k
psgraph.lisp 457| 18k
psgraph.doc 5k
source-compare.lisp 640| 54k
user-manual.lisp 500| 35k
xref.lisp 2109 | 125k
xref-patterns-for-macl.lisp| 76 3k
xref-test.lisp 92 2k
Total 9269 | 592k

There is a mailing list for notification of major updates, bug-fixes and additions to the Lisp
Utilities collection. To be added to the mailing list, send email with your name, email address,
and affiliationto CL- Uti | i ti es- Request @s. cru. edu.

Bug reports, comments, questions and suggestions should be sent to nkant +@s. cnu. edu.
Also, please send us copies of any changes or improvements you make to the software, so that
we may merge them into the originals.

Introduction 5

1.5. Acknowledgments

Many users of the tools have contributed enhancements, bug fixes, suggestions and detailed bug
reports. | would especialy like to thank Anton Beschta, Sean Boisen, Michael Brent, Steve
Chanin, Daniel J. Clancy, Matthew Cornell, Rodney Daughtrey, David A. Duff, Ute Gappa,
Gabriel Inaebnit, Dick Jackson, Bradford W. Miller, Karsten Poeck, Jean-Francois Rit, William
D. Smith, Ralph P. Sobek, Steve Strassmann and Rick Taube.

The METERING code profiler is derived directly from the work of Chris McConnell on the
MONITOR program and the work of Skef Wholey and Rob MacL achlan on the PROFILE program.
Many thanks to Chris McConnell and Rob MacL achlan for comments on the result of merging
and extending their two programs.

Thanks to Neil J. Calkin for the idea that led to the proof that SOURCE-COMPARE runs in average
case linear time.

| am grateful to Peter Lee for supervising this work towards a minor in programming systems.

Finally, | would like to thank my advisor, Joe Bates, for allowing me to become occasionally
"distracted" from my research to work on the utilities during the past year.

Portable Utilities for Common Lisp

XREF: Cross Referencer 7

2. XREF: Cross Referencer

The XREF or List Callers system is a portable Common Lisp cross referencing tool. It grovels
over a set of files and compiles a database of the locations of all references to each symbol used
in thefiles. It issimilar to the Symbolics Who-Calls and Xerox Masterscope facilities[2] [3] [8].

When you change a function or variable definition, it can be useful to know its callers, in order
to update each of them to match the new definition. Similarly, agraphical display of the structure
of a program can help make undocumented code more understandable. This code analyzer
implements both capabilities.

The database compiled by XREF is suitable for viewing by a graphical browser. Since the call
graph is not necessarily a DAG, and many graphical browsers assume a DAG, XREF includes
code to convert the graph to atree-like representation. XREF also includes a simple text-indenting
outliner for displaying call graphs on ascii terminals, as well as an interface to Joe Bates
PSGRAPH PostScript DAG grapher.

2.1. Overview

XREF analyzes a user’'s program, determining which functions call a given function and the
locations where variables are bound/assigned and used. The user may retrieve this information
for a single symbol, or display the call graph of portions of the program (up to and including the
entire program). This helps the programmer debug and document the program’ s structure.

XREF is primarily intended for analyzing large programs, for which it is difficult, if not
impossible, for the programmer to grasp the structure of the whole program. Nothing precludes
using XRer for smaller programs, however, where it can be useful for inspecting the
relationships between pieces of the program and for documenting the program.

Two aspects of the Lisp programming language greatly simplify the analysis of Lisp programs:3

» The syntax of Lisp programs and data are the same. Successive definitions from a
filemay beread in aslist structure.

» The basic syntax of Lisp is uniform. A Lisp program consists of a set of nested
forms, where each form is a list whose car is a tag (e.g., function name) that
specifies the structure of the rest of the form.

Thus Lisp programs, when read as data, can be thought of as parse trees. Given a grammar of
syntax patterns for the language, XREF recursively descends the parse tree for a given definition,
computing a set of relations that hold for the definition at each node in the tree. For example, a

30f course, macros and eval complicate the analysis of Lisp programs.

4While xrer currently works only for programs written in Lisp, it could be extended to other programming
languages by writing a function to generate parse trees for definitions in that language, and a core set of patterns for
the language’ s syntax.

8 Portable Utilities for Common Lisp

typical relation is that the functions in the body of a definition are called by the defined function.
Therelations are stored in a database for later inspection by the user.

XREF may operate in either a static or a dynamic mode. In the static mode XREF does a static
syntactic analysis of the program, but does not detect references due to the expansion of a macro
definition. In the dynamic mode XREF will expand any macros for which it does not have
predefined patterns.

The dynamic analysis of a program requires XREF to have some knowledge about the semantics
of the program. For example, a macro could call functions defined by the program to do the
expansion. This entails either modifying the compiler to record the relationships (e.g., Symbolics
Who-Calls Database) or doing awalk of loaded code and macroexpanding as needed (PCL code
walker). Since the former is not portable, XREF implements the latter.

In order for XREF to expand macros the code used by the macros must be loaded and in working
order. Also, XREF's parameters probably should be set so that it processes forms in their proper
packages. If the code is not loaded, XREF will default to operating in the static analysis mode.
When XREF operates in dynamic mode it doesn’t need any special knowledge about the syntax of
macros (excluding the 24 special forms of Lisp). On the other hand, to operate properly in static
analysis mode XREF must have patterns defined for all the standard macros of Common Lisp.
Thus, even though most Lisps implement dolist as a macro, XREF will not call
macr oexpand- 1 on aform whose car isdol i st because it will use the predefined template for
dol i st instead.

If macro expansion is disabled, the default rules for handling macro references may not be
sufficient for some user-defined macros, because macros allow a variety of non-standard
syntactic extensions to the language. In this case, the user may specify additional templatesin a
manner similar to that in which the core Lisp grammar was specified.

2.2. Loading XREF

XREF runs best when compiled and will issue a warning if the source is loaded instead. It aso
loads much faster when compiled. To use, load the compiled version of xref.|isp and any
additional patterns, such as xref-patterns-for-macl.|isp. XREF is loaded into the
"XREF" package, so prefix al the following functions and variables with an "X REF:".

2.3. Using XREF

This section describes all of the basic XREF commands and the variables which control their
behavior. XREF includes functions for creating the reference database, saving the database to file,
restoring a saved database, and retrieving information from the database in a variety of formats.

XREF: Cross Referencer 9

2.3.1. Creating, Saving and Restoring the Reference Database

xref-files and xref-file arethe man functions for creating the reference database. For
very large systems of filesit can take severa minutes to process the code, so writing the database
to file may save some time. wri t e- cal | er s- dat abase-to-fil e may be used to save the
database to afile, which may then be loaded using | oad to restore the database.

xref-files (&restfiles) [Function]
Grovels over the Lisp code located in the specified source files files, using
xref-file.

xref-file (filename &optional (clear-tablest) [Function]

(verbose * xref-verbose*))

Cross references the function and variable calls in filename by walking over the source
code located in the file. Defaults type of filenameto "l i sp”. If clear-tablesist (the
default), it clears the callers database before processing the file. Specify clear-tables as
ni | to append to the database. If verboseist (the default), prints out the name of the
file, one progress dot for each form processed, and the total number of forms.

write-callers-database-to-file (filename) [Function]

Saves the contents of the current callers database to afile. This file can be loaded to
restore the previous contents of the database.

2.3.2. Examining Symbol References

The following functions display information about the uses of the specified symbol as a function
or variable.

l'i st-callers (symbol) [Function]
Listsall functions which call symbol as a function (function invocation).

l'i st-readers (symbol) [Function]
Listsall functions which refer to symbol as a variable (variable reference).

li st-setters (symbol) [Function]
Listsal functions which bind/set symbol as a variable (variable assignment).

l'i st-users (symbol) [Function]
Lists al functions which use symbol as a variable or function.

who- cal | s (symbol &optional how) [Function]
Lists callers of symbol. how may be: f uncti on,: reader,:setter,or
svari abl e.

what -fil es-call (symbol) [Function]

Lists names of files that contain uses of symbol as a function, variable, or constant.

source-fil e (symbol) [Function]
Lists the names of filesin which symbol is defined and/or used.

10 Portable Utilities for Common Lisp

l'i st-callees (symbol) [Function]
Lists names of functions and variables called by symbol.

2.3.3. Viewing and Graphing the Reference Database

The following functions are useful for viewing the database and displaying it in a variety of
formats.

di spl ay- dat abase (&optional (database :callers) [Function]
(types-to-ignore * types-to-ignore*))

Prints the name of each symbol and alist of al its callers. Specify database as

: cal | er s (the default) to get function call references, as: fi | e to the get filesin
which the symbol iscalled, as: r eader s to get variable references, and as: setters
to get variable binding and assignments. Ignores functions of the typeslisted in
types-to-ignore.

print-caller-trees (&key (mode *default-graphing-mode*) [Function]
(types-to-ignore * types-to-ignore*) compact
root-nodes)

Prints the calling trees (which may actually be afull graph and not necessarily a DAG)
asindented text treesusing pri nt - i ndent ed-tree. modeis: cal | - gr aph for trees
where the children of a node are the functions called by the node, or : cal | er - gr aph
for trees where the children of a node are the functions the node calls. types-to-ignore
isalist of funcall types (as specified in the patterns) to ignore in printing out the
database. For example,” (: 1i sp) wouldignoreall callsto Common Lisp functions.
compact is aflag to tell the program to try to compact the trees a bit by not printing
treesif they have already been seen. root-nodesisalist of root nodes of treesto
display. If root-nodesisni | , displaystreesfor al the root nodes in the database.

print-fil e-dependenci es (&optiona (database * callers-database*)) [Function]

Printsalist of file dependencies for the references listed in database. This function
may be useful for automatically computing file loading constraints for a system
definition tool such as defsystem.

The PSGRAPH program (psgr aph. | i sp) must be loaded before using psgr aph- xr ef .

psgr aph- xref (&key (mode * default-graphing-mode*) [Function]
(output-directory * postscript-output-directory*)
(types-to-ignore * types-to-ignore*) (compact t)
(shrink t) root-nodes)

Creates a postscript file for each call-graph in the database. If shrinkist , shrinks the
output to fit on asingle page. If compact ist , will print the tree rooted at a given node
only once. mode may be: cal | - gr aph to display the call-graph, : cal | er - gr aph to
display theinverse. If root-nodesisni | , it triesto find all the root nodesin the
database (functions not called by other functions) and display those. Otherwise,
root-nodes should be alist of root nodes of the trees to be displayed.

XREF: Cross Referencer 11

2.3.4. XREF Variables

The following variables control the default operation of XREF.
xref -ver bose t [Variable]

Whent , xref -fil e printsout the names of thefilesit looks at, progress dots, and the
number of forms read.
types-to-i gnore (quote (:lisp :lisp2)) [Variable]

Default set of caller types (as specified in the patterns) to ignore in the database
handling functions. : | i sp isCLtL 1st edition [6], : | i sp2 isadditional patterns from
CLtL 2nd edition [7].

handl e- package-f orns () [Variable]

When non-ni | and xr ef - f i | e encounters a package-setting form likei n- package,
the form is evaluated to set the current package to the specified package. When done
with thefile, xr ef - f i | e resetsthe package to its original value. In some of the
displaying functions, when this variable isnon-ni | one may specify that all symbols
from a particular set of packages beignored. Thisisonly useful if the files use
different packages with conflicting names.

handl e-function-fornms t [Variable]

Whent , xref-fil e triesto be smart about forms which occur in afunction position,
such as lambdas and arbitrary Lisp forms. If so, it recursively callsrecord-cal | ers
with pattern’ f or m If the form isalambda, the name : unnaned- | anbda isused in
the database.

handl e- macr o- f or ns t [Variable]

Whent , if the file was loaded before being processed by XREF, and the car of aformis
amacro, it notes that the parent calls the macro, and then calls macr oexpand- 1 on
the form.

def aul t - gr aphi ng- node :call-graph [Variable]

Specifies whether we graph up or down. If : cal | - gr aph, the children of anode are
the functionsit calls. If : cal | er - gr aph, the children of a node are the functions that
cal it.

*i ndent - anount * 3 [Variable]
Number of spacesto indent successive levelsinpri nt -i ndent ed-tree.

2.4. An Example of Using XREF

In this section we give some examples of using XREF to analyze xref -test. | i sp, a simple
nonsense program. The program is listed in Appendix | and tests several aspects of XREF.

Assuming XREF is already loaded, we must first analyze the formsin the file using xref-file:

<cl> (xref:xref-file "xref-test.lisp")
Cross-referencing file xref-test.lisp.

6 forms processed.

12 Portable Utilities for Common Lisp

If we wish to see which functions call f r owz, we use the list-callers function:

<cl> (xref:list-callers 'frowz)
(BARF TOP- LEVEL)

The function print-caller-trees may be used to print the call graph using indentation to show
levels:

<cl> (xref:print-caller-trees)
Rooted calling trees:
TOP- LEVEL
FROB
FROB- | TEM
APPEND- FROBS
BARF
FRONZ
PROCESS- KEYS
SNARF- | TEM
PROCESS- KEY
SYMBCL- NAME- KEY
NODE- PCSI TI ON
FRONZ
PROCESS- KEYS
SNARF- | TEM
PROCESS- KEY
SYMBCL- NAME- KEY
NODE- POSI Tl ON

Note how the tree rooted at f r owz is repeated, once for each place it occurs. We can eliminate
this duplication using the : conpact keyword:

<cl> (xref:print-caller-trees :conpact t)
Rooted calling trees:

TOP- LEVEL

FROB

FROB- | TEM
APPEND- FROBS

BARF
FRONZ

FROWZ
PROCESS- KEYS
SNARF- | TEM
PROCESS- KEY

SYMBOL- NAME- KEY
NCDE- PCSI TI ON

Thistime the treeis printed only once, and only the symbol f r owz is repeated.

A PostScript version of the call graph may be created using the psgr aph- xr ef interface from
XREF t0 PSGRAPH. To use this interface, load PSGRAPH and evaluate the definition of
psgr aph- xr ef which iscommented out in xr ef . | i sp. Running psgr aph- xr ef then creates
a separate PostScript file for each root of a call graph in the database. The file
xref-test.|isp hasonly oneroot, thefunctiont op- | evel :

* (xref:psgraph-xref)
Creating PostScript file "top-Ilevel.ps".

XREF: Cross Referencer 13

Figure 2-1 shows what this graph looks like.

FROB)—(FROB-ITEM}——(APPEND-FROBS)

BARF}—(FROWZ)
PROCESS-KEYS
SNARF-ITEM

PROCESS-KEY)}—{SYMBOL-NAME-KEY)

TOP-LEVEL

NODE-POSITION)

Figure 2-1: Sample PostScript Call Graph

2.5. Extending XREF

As noted in Section 2.1, XREF works by considering the Lisp forms to be parse trees, and
matching the parse trees against a grammar for the language. The following macros define new
function and macro call patterns. They may be used to extend XREF to handle new definition
forms and extensions to Common Lisp.

defi ne- pattern-substitution (name pattern) [Macro]

Defines name to be equivalent to the specified pattern. Useful for making patterns
more readable. For example, thel anbda- | i st patternis defined as a pattern
substitution, thereby making the definition of the def un caller-pattern simpler.

defi ne-cal | er - pat t er n (name pattern & optional caller-type) [Macro]

Defines name as a function/macro call with argument structure described by pattern.
caller-type, if specified, assigns atype to the pattern, which may be used to exclude
references to name while viewing the database. For example, all the Common Lisp
definitions have acaller-typeof : | i sp or: | i sp2, so that you can exclude references
to common Lisp functions from the calling tree.

def i ne-vari abl e- pat t er n (name &optional caller-type) [Macro]

Defines name as a variable reference of type caller-type. Thisis mainly used to
establish the caller-type of the variable.
define-call er-pattern-synonyns (source destinations) [Macro]

For defining function caller pattern syntax synonyms. For each name in destinations,
defines its pattern as a copy of the definition of source. Allows alarge number of
identical patterns to be defined simultaneously. Must occur after the source pattern has
been defined.

XREF includes pattern definitions for the latest Common Lisp specification, as published in [7].

Patterns may be either structures to match, or a predicate like # nunberp. The pattern
specification language is similar to the notation used in [7], but in amore Lisp-like format:

14

—~~ /N A/~

(:

&o

:eq hane)
;test test)

‘typep type)
.or patl pat2 ...)

:rest pattern)

;optional patl ...)

»star patl ...)

plus patl ...)

ptional, &key, &rest

FORM

GNORE

NAVE

FUNCTI ON, MACRO

VAR

VARI ABLE

Portable Utilities for Common Lisp

The form element must be eq to the symbol nane.
t est must be true when applied to the form element.
The form element must be of typet ype.

Tries each of the patterns in left-to-right order, until one
succeeds. Equivalentto{ patl | pat2 | ... }.

The remaining form elements are grouped into a list which is
matched against pat t er n.

The patterns may optionally match against the form element.
Equivaentto[patl ...].

The patterns may match against the patterns any number of
times, including zero. Equivalentto{ pat1 ... }*.

The patterns may match against the patterns any number of
times, but at least once. Equivalentto{ patl ... }+.

Similar in behavior to the corresponding lambda-list keywords.

A random Lisp form. If a cons, assumes the car is a function or
macro and tries to match the args against that symbol’ s pattern.
If asymbol, assumesit’s a variable reference.

Ignores the corresponding form element.

The corresponding form element should be the name of a new
definition (e.g., thefirst arg in adefun pattern isnane).

The corresponding form element should be a function
reference not handled by f or m Used in the definition of the
pattern f n which is used in defining the patterns for appl y and
funcal | .

The corresponding form element should be a variable
definition or mutation. Used in the definition of | et, | et *,
etc.

The corresponding form element should be a variable
reference.

In al other pattern symbols, it looks up the symbol’ s pattern substitution and recursively matches
against the pattern. It will automatically destructure list structure that does not include consing
dots.

Among the predefined pattern substitution names are:
STRING, SYMBOL, NUMBER Appropriate :test patterns.
LAMBDA- LI ST
BODY

FN

Matches against alambdalist.
Matches against a function body definition.

Matches against # <f unct i on>,’ <f uncti on>, and lambdas. Thisis
used in the definition of appl y, f uncal | , and the mapping patterns.

XREF: Cross Referencer 15

Seexref . |isp for others.

Here ae some sample pattern definitions which illustrate the use of
define-call er-pattern:

(define-caller-pattern defun
(name | anmbda-1i st
(:star (:or docunmentation-string declaration))
(:star forn)

:lisp)

(define-caller-pattern funcall (fn (:star form) :lisp)

In general, XREF is intelligent enough to handle any sort of simple funcall. One only needs to
specify the syntax for macros that use destructuring (unless * handl e- macr o-f or ns* ist and
the files being analyzed are also loaded), for functions with some argument positions that are
special (e.g., apply and funcall), or to indicate that the function is of a specific caller type.

2.6. Implementation Notes

The functionsr ecord-cal | ers andr ecor d- cal | er s* do the real work in cross referencing
a file. record-cal | ers processes patterns that are symbols or otherwise atomic, while
record-cal | er s* processes simple list-structure patterns.

record-cal | ers checksif the pattern is one of the known basic patterns. If so, it updates the
database appropriately. Otherwise, it is a pattern defined in terms of other patterns, and
record- cal | er s substitutes the definition of the pattern substitution.

If the patternisf orm r ecor d- cal | er s uses the form’s tag (the car of the form) to look up a
new pattern from the pattern database, and calls record-callers recursively on the form and the
new pattern. If *handl e- macro-f or ns* ist and the tag is a macro, it expands the macro and
calls itself again on the result. Otherwise, r ecor d- cal | er s assumes that the form is a random
function call, and processes it with adefault pattern of (: star forn).

record-cal | ers also handles the special : eq, : t est and : t ypep patterns. If the pattern is a
list and not one of these special patterns, r ecor d- cal | er s asksr ecor d- cal | er s* to process
the form and pattern.

record-cal | ers (filename form & optional pattern parent [Function]
(environment nil) funcall)

record-cal | er s isthe main routine used to walk down the code. It matches the
pattern against the form, possibly adding statements to the database. parent is the name
defined by the current outermost definition; it is the caller of the formsin the body.
environment is used to keep track of the scoping of variables. funcall deals with the
type of variable assignment and determines how the environment should be modified.
recor d- cal | er s handles atomic patterns and simple list-structure patterns. For
complex list-structure pattern destructuring, it callsr ecor d- cal | er s*.

16 Portable Utilities for Common Lisp

record-cal | ers* isamore complex function. It is recursive in both r ecor d-cal | ers and
itself, and also maintains a stack of unprocessed patterns. The stack is needed to process the
coptional, :star, :plus and :rest patterns correctly. For example, to process a
:opti onal pattern element, r ecor d- cal | er s* first tries matching the form against the rest of
the : opti onal pattern element, pushing the other pattern elements onto the stack. If at any
point r ecor d- cal | er s* runsout of pattern elements, it continues from the pattern at the top of
the stack. If processing the form with the : opti onal pattern element included fails (returns
nil), record-call ers* then tries skipping over the element. The: star,: plus and: rest
patterns are similar.

record-cal | er s* (filename form pattern parent environment & optional [Function]

continuation in-optionals in-keywords)

record- cal | er s* handles complex list-structure patterns, such as ordered lists of
subpatterns, patternsinvolving : st ar, : pl us, &opti onal , &ey, &r est , etc.
continuation is a stack of unprocessed patterns, in-optionals and in-keywords are
corresponding stacks which determine whether &r est or &ey has been seen yet in
the current pattern.

XREF assumes that the source code is syntactically correct Lisp, and uses r ead to read forms
from thefile. If xr ef - f i | e dropsinto the debugger while processing afile, examining the value
of *| ast - f or m can help determine what went wrong.

*| ast-fornr () [Variable]

The last form read from the file. Useful for figuring out what went wrong when
xref - fi | e dropsinto the debugger.

The function gat her - t r ee is used to create a list-structure tree representation of the database.
Since the database may contain cycles, it stops when a reference is repeated in order to avoid
infinite loops. The function nake-cal | er-tree does something similar for when the root
nodes are not specified. It calls fi nd-roots-and-cycl es to return a list of the uncalled
callers as potential roots. The function pri nt-i ndent ed tree prints out such trees using
indentation to represent child nodes.
gat her - t r ee (parents & optional already-seen [Function]
(mode * default-graphing-mode*)
(types-to-ignore * types-to-ignore*) compact)

Extends the tree, copying it into list structure, until it repeats a reference (hitsacycle).

make- cal | er-tree (&optiona (mode * default-graphing-mode*) [Function]
(types-to-ignore * types-to-ignore*) compact)

Outputs list structure of atree which roughly represents the possibly cyclical structure
of the caller database. If modeis: cal | - gr aph, the children of anode are the
functionsit calls. If modeis: cal | er - gr aph, the children of a node are the functions
that call it. If compactist, triesto eliminate the already seen nodes, so that the graph
for anodeis printed at most once. Otherwise it will duplicate the node' s tree (except
for cycles). Thisis useful because the call treeis actually a directed graph, so we can
either duplicate references or display only the first one.

XREF: Cross Referencer 17

find-roots-and-cycl es (&optional (mode * default-graphing-mode*) [Function]
(types-to-ignore * types-to-ignore*))

Returns alist of uncalled callers (roots) and called callers (potential cycles).
print-indented-tree (trees &optional (indent 0)) [Function]

Simple code to print out a list-structure tree (such as those created by
make- cal | er -t ree) asindented text.

18

Portable Utilities for Common Lisp

METERING: Code Timing and Consing Profiler 19

3. METERING: Code Timing and Consing Profiler

The METERING system is a portable Common Lisp code profiling tool. It gathers timing and
consing statistics for specified functions while a program is running. The METERING system is
the result of a merging of the capabilities of the MONITOR program written by Chris McConnell
and the PROFILE program written by Skef Wholey and Rob MacLachlan and extending the
resulting program. Portions of the documentation from those programs were incorporated into
this chapter.

3.1. Installing METERING

Before using METERING there are a number of small, implementation-dependent macros you
may want to customize for your Lisp.

The METERING system will collect timing statistics in any valid Common Lisp. The macro
get -ti ne is caled to find the total number of ticks since the beginning of time. The constant
ti me-units-per-second is used to convert ticks into seconds. These default to
get-internal-run-tineandinternal -time-units-per-second, respectively.

To collect consing statistics, define a get - cons macro for your implementation of Lisp. The
get - cons macro has been defined for CMU Common Lisp, Lucid Common Lisp (3.0), and
Macintosh Allegro Common Lisp (1.3.2). If you write a get - cons macro for a particular
version of Common Lisp, we' d appreciate receiving the code. This macro should return the total
number of bytes consed since the beginning of time.

The METERING system works by encapsulating the definitions of the monitored functions. By
default, this encapsulation captures the arguments in an &rest arg, and then applies the old
definition to the arguments. In most Lisps this will result in additional consing. To reduce the
extra consing, when a r equi r ed- ar gunent s function is available we use it to find out the
number of required arguments, and use &rest to capture only the non-required arguments (if
any). Ther equi r ed- ar gunent s function should return two values: the first is the number of
required arguments, and the second is non-ni | if there are any non-required arguments (e.g.,
&optional, &rest, and &key args). The r equi r ed- ar gunent s function has been defined for
CMU Common Lisp, Macintosh Allegro Common Lisp (1.3.2), Lucid Common Lisp (3.0), and
Allegro Common Lisp.

Since the encapsulation process creates closures, performance and accuracy are greatly improved
if the code is compiled. Accordingly, the user is warned if the source is loaded instead of
compiling it first.

20 Portable Utilities for Common Lisp

3.2. Using METERING

This section describes all of the basic METERING commands and variables which control their
behavior. METERING includes functions for monitoring and unmonitoring functions, as well as
functions for displaying a report of profiling statistics, including number of calls, CPU time, and

storage usage.

3.2.1. Suggested Usage
The easiest way to use the METERING systemisto load it and evaluate either

(rmon:wi th-nonitoring (<name>*) ()
<f or mp*)

or
(rmon: noni t or - form <f or np)

The former allows you to specify which functions will be monitored, while the latter monitors all
functions in the current package. Both automatically produce a table of statistics. Variations on
these functions can be constructed from the monitoring primitives, which are described in
Section 3.2.2.

Start by monitoring big pieces of the program, then carefully choose which functions to be
monitored next.

If you monitor functions that are called by other monitored functions, decide whether you want
inclusive or exclusive statistics. The former includes the monitoring time of inner functions from
their callers, while the latter subtractsit. It isimportant to be aware of what kind of statistics you
are displaying, since the difference can be confusing.

If the per-call time reported is less than 1/10th of a second, then consider the clock resolution
and profiling overhead before you believe the time. You may need to run your program many
timesin order to average out to a higher resolution.

3.2.2. METERING Primitives

The wi t h-noni tori ng and noni t or - f or m macros are the main externa interface to the
METERING system.

wi t h- noni t ori ng ((&rest functions) [Macro]
(&optional (nested :exclusive) (threshold 0.01)
(key :percent-time))
& body body)
The named functions are monitored, the body forms executed, atable of results

printed, and the functions unmonitored. The nested, threshold, and key arguments are
passed tor epor t - moni t ori ng.

METERING: Code Timing and Consing Profiler 21

moni t or - f or m(form & optional (nested :exclusive) [Macro]
(threshold 0.01) (key :percent-time))

Monitor the execution of all functionsin the current package during the evaluation of
form. A table of resultsis printed. The nested, threshold, and key arguments are passed
toreport-nonitoring.

The functions noni t or, unnoni t or, and noni tor-al | are primitives which are called by
wi t h-noni toringandnonitor-form

noni t or ed- f uncti ons () [Variable]
List of all functions that are currently being monitored.
moni t or (&rest names) [Macro]

The named functions are set up for monitoring by augmenting their function
definitions with code that gathers statistical information about code performance. As
with thet r ace macro, the names are not evaluated. If afunction is already monitored,
unmonitors it before remonitoring (useful when a function has been redefined). If a
name is undefined, gives awarning and ignores it. If no names are specified, returnsa
list of al monitored functions. If aname isnot asymbol, it is evaluated to return the
appropriate closure. This alows the monitoring of closures stored anywhere, such asin
avariable, array, or structure. Most other metering packages do not handle this.

unnoni t or (&rest names) [Macro]

Remove the monitoring on the named functions. If no names are specified, all
currently monitored functions are unmonitored.

moni tor - al | (&optional (package * package*)) [Function]
Monitors all functions in the specified package, which defaults to the current package.

moni t or ed (function-place) [Function]
Predicate which tests whether a function is monitored.

The following two functions are used to erase accumulated statistics.

reset - noni t ori ng-i nf o (name) [Function]
Resets the monitoring statistics for the specified function.
reset-all-monitoring() [Function]

Resets the monitoring statistics for all monitored functions.

The functionsr epor t - noni t ori ng and di spl ay- noni t ori ng-resul ts areused to print a
statistical report on the monitored functions. di spl ay- noni t ori ng-resul ts may be called
to view the data created by r eport - noni t or i ng in various ways.

22 Portable Utilities for Common Lisp

report - noni t ori ng (&optional names (nested :exclusive) [Function]
(threshold 0.01) (key :percent-time)
ignore-no-calls)

Creates atable of monitoring information for the current state of the specified list of
functions, and displays the table using di spl ay- noni t ori ng-resul ts. If namesis
cal |l ornil,usesal currently monitored functions.

Takes the following arguments:

* nested specifies whether nested calls of monitored functions are included in the
times of monitored functions.

* If i ncl usi ve, the per-function information is for the entire duration of
the monitored function, including any callsto other monitored functions.
If functions A and B are monitored, and A calls B, then the accumul ated
time and consing for A will include the time and consing of B.2

* |f : excl usi ve, theinformation excludes time attributed to calls to other
monitored functions. Thisisthe default.

* threshold specifies that only functions which have been executed more than
threshold amount of the time will be reported. Defaultsto 1%. If athreshold of
0 is specified, all functions are listed, even those with O or negative running
times. See relevant note in Section 3.4.2.

* key specifies that the table be sorted by one of the following sort keys:
+: functi on. Alphabetically by function name.

* . percent-ti me. By percent of total execution time.

* : per cent - cons. By percent of total consing.

+ : cal | s. By number of times the function was called.

* . time-per-call.By average execution time per function.
* : cons- per - cal | . By average consing per function.
*:time.Sameas: percent-tine.

*:.cons. Sameas: per cent - cons.

SIf afunction callsitself recursively, the time spent in the inner call(s) may be counted several times.

METERING: Code Timing and Consing Profiler

di spl ay- noni t ori ng-resul ts (&optiona (threshold 0.01)
(key :percent-time) (ignore-no-calst))

Prints a table showing for each named function:

* the total CPU time used in that function for al calls
« the total number of bytes consed in that function for all calls

* the total number of calls
» the average amount of CPU time per call

* the average amount of consing per call

« the percent of total execution time spent executing that function

* the percent of total consing spent consing in that function

23

[Function]

Summary totals of the CPU time, consing, and calls columns are printed. An estimate
of the monitoring overhead is also printed. May be run even after unmonitoring al the

functions, to play with the data.

3.3. An Example of METERING Output

The following is an example of what the table looks like:

Tot al
Ti me

0. 478863
0. 292760
0. 041648
0. 015680

Tot al
Cons

% %
Functi on Time Cons Calls Sec/Call
FI ND- ROLE: 0.58 0.00 136 0.003521
GROUP- ROLE: 0.35 0.00 365 0.000802
GROUP- PROJECTOR: 0.05 0.00 102 0. 000408
FEATURE- P: 0.02 0.00 570 0.000028
TOTAL: 1173

Estimated total nonitoring overhead: 0.88 seconds

3.4. Usage Notes

0. 828950

This section comments on some aspects of the implementation that may affect the accuracy of

the statistics.

3.4.1. Clock Resolution

On most machines, the length of a clock tick is much longer than the time it takes a simple
function to run. For example, on an IBM RT-APC the clock resolution is 1/100th of a second, on
a Decstation 3100 it is 1/1000th of a second, and on a Symbolics 3640 it is 1/977th of a second.
This means that if afunction is called only afew times, then only the first few decimal places are

really meaningful.

24 Portable Utilities for Common Lisp

3.4.2. Calculating M onitoring Over head

Every time a monitored function is called, the added monitoring code takes some amount of time
to run. This can result in inflated times for functions that take little time to run. Also, in many
Lisps the function get -i nt er nal -run-ti me conses, which can affect the consing statistics.
Accordingly, an estimate of the overhead due to monitoring is subtracted from the time and
storage reported for each function.

Although this correction works fairly well, it is not completely accurate. This can result in times
that become increasingly meaningless for functions with shorter runtimes. For example,
subtracting the estimated overhead may result in negative times for some functions. This should
only be of concern when the estimated profiling overhead is many times larger than the reported
total CPU time.

If you monitor functions that are called by monitored functions, in : i ncl usi ve mode the
monitoring overhead for the inner functions are subtracted from the CPU time for the outer
function.® In : excl usi ve mode this is not necessary, since we subtract the monitoring time of
inner functions, overhead and all.

Otherwise, the estimated monitoring overhead is not counted in the reported total CPU time. The
sum of total CPU time and the estimated monitoring overhead should be close to the total CPU
time for the entire monitoring run (as reported by the t i me macro).

The timing overhead factor is computed at load time. This will be incorrect if the monitoring
codeisrunin adifferent environment than that in which the file was loaded. For example, saving
aLisp image on a high performance machine and running it on alow performance one will result
in an erroneously small overhead factor.

If the statistics vary widely, possible causes are:

» Garbage collection. Try turning it off and then running the code. Be forewarned that
running an encapsulated function results in some extra consing, and that
get-internal -run-ti me will probably consaswell.

» Swapping. The time it takes to swap your function into memory can affect the
reported statistics. If you have enough memory, try executing your form once before
monitoring it so that it will be swapped into memory.

» Resolution of i nt ernal -ti me-units-per-second. This value is rather coarse
in many Lisps, as noted in Section 3.4.1. If this value istoo low, the timings become
wild. Try executing your test form more times or for alarger number of iterations.

6This is accomplished by counting for each function not only the number of calls to the function itself, but also
the number of callsto monitored functions. This can become rather confusing for recursive functions.

METERING: Code Timing and Consing Profiler 25

3.5. Implementation Notes

The overhead is calculated by monitoring st ub- f unct i on and running it for alarge number of
times (over head-i t erati ons), storing the timing and consing overhead into the variables
nonitor-time-overhead and *nonitor-cons-overhead*, respectively. Since
st ub-f uncti on isanull function, this results in a fairly accurate estimate for the overhead of
monitoring a function. If you suspect that these values are inaccurate, try running
set - noni t or - over head again.

noni tor-time-over head () [Variable]
The amount of time an empty monitored function costs.

noni t or - cons- over head () [Variable]
The amount of cons an empty monitored function costs.

over head-i t er at i ons 5000 [Constant]
Number of iterations over which the timing overhead is averaged.

st ub-function () [Function]

A null piece of code run monitored to estimate monitoring overhead.
set - moni t or - over head () [Function]

Determines the average overhead of monitoring by monitoring the execution of an
empty function many times.

The key idea behind METERING is to replace the definition of the monitored function with a
closure that records the monitoring data and updates the data with each call to the function. As
noted in Section 3.1, we can reduce the amount of consing done by the &rest arg in each lambda
by using the &rest arg to capture only the non-required arguments. The function
make- noni t or i ng- encapsul at i on returns a lambda expression which, when called with a
function name, encapsulates it with a closure that has the right number of required arguments.
To create these closures efficiently, we precompute the encapsulation-creating functions for up
to pr econput ed- encapsul at i ons number of required arguments (with and without optional
arguments) and store them in a hash table for later retrieval by noni t ori ng- encapsul at e. If,
when encapsulating a function, the encapsulation-creating function is not found in the hash table
by fi nd-encapsul ati on, a new function is added to the table. Since we're precomputing
closure functions for common argument signatures, there is no need to call conpi | e for each
monitored function.

make- noni t ori ng- encapsul at i on (min-args optionals-p) [Function]

Makes a function which will appropriately encapsulate any function with min-args
required arguments.

pr econput ed- encapsul ati ons 8 [Constant]

We create precomputed encapsulations for up to this number of required arguments.
Any others will be computed as needed.

26 Portable Utilities for Common Lisp

exi sting-encapsul ati ons (make-hash-table :test (function equal)) [Variable]

Hash table which maps from common argument signatures (required-args . optionals-
p) to appropriate precomputed closure functions.

fi nd- encapsul at i on (min-args optionals-p) [Function]

Used to find the appropriate precomputed encapsulation function if it exists, or create
(and save) anew one if necessary.

moni t ori ng- encapsul at e (name &optional warn) [Function]
Monitors the function Name. If already monitored, unmonitor first.

moni t ori ng- unencapsul at e (name &optional warn) [Function]
Removes monitoring encapsul ation code from around Name.

The variables *nmoni t or-resul t s* and *no-cal | s* are associated with the functions that
create and display monitoring statistics.

moni tor-results () [Variable]
A table of monitoring statisticsis stored here.
no-cal l s () [Variable]

A list of monitored functions which weren't called.

DEFSYSTEM: A "make" for Lisp 27

4. DEFSYSTEM: A "make" for Lisp

The DEFSYSTEM program is a portable system definition facility for Common Lisp.” It is useful
for managing programs which consist of several files, and provides a convenient way to describe
dependencies between files in the system and dependencies of the system on other systems.

A system is defined as hierarchical layers of modules, with an optionally matching directory
structure. In contrast with the Symbolics defsystem, systems are described solely in terms of
their structure; the user does not need to worry about procedural matters such as compilation
order. For example, the components of a system may be listed in any order the user desires,
because the def syst em macro reorganizes them according to the file-dependency constraints
specified by the user. Since it accomplishes this by performing a topological sort of the
constraint graph, cyclical file dependencies are not supported (i.e., the file-dependency graph
must be a DAG).

DEFSYSTEM includes many of the basic features, such as minimizing the amount of compilation
and loading that must be done when some part of the system is changed. Selective recompilation
occurs only when the binary file either does not exist or is older than the corresponding source
file, or when the file depends on other files that needed to be recompiled. Of course, the user can
decide to override this behavior and require that all files be recompiled, even those whose binary
filesare up to date.

Only two operations on systems are currently defined (compile and load). The interface for
defining new operations on systems, however, is ssmple and straightforward.

DEFSYSTEM does not currently support patching.

4.1. Installing DEFSYSTEM

Before using DEFSYSTEM, decide if you want to have one or more central directories where
system definition files will be kept. If so, modify the value of *central -regi stry* to
contain alist of the pathnames of those directories.

Verify that the value of *fi | enanme- ext ensi ons* includes source and binary extensions for
your Lisp; if not, add them.

Set the variable *dont - r edef i ne-requi re* tot if you want to prevent DEFSYSTEM from
redefining r equi r e. Thisis useful for Lisps that treat r equi r e specialy in the compiler. (For
example, some Lisps treat requi re asif an (eval -when (conpile load eval) ...)

"Though home-grown, it was inspired by fond memories of the defsystem facility on Symbolics 3600 Lisp
Machines[3] [4]. The exhaustive list of filename extensions for various Lisps was initially taken from Xerox
Corporation’s PCL miniature defsystem facility. The idea to have one oper at e- on- syst em function in
addition to separate conpi | e- syst emand| oad- syst emfunctions was also taken from PCL.

28 Portable Utilities for Common Lisp

were wrapped around the form, and lose this special treatment when requi r e is redefined.
While we provide an alternate redefinition of r equi r e as a macro to work around this problem,
some users may find it simpler to not redefine r equi r e, especialy if they don't need the
backward compatibility.)

If you intend to use logical pathnames in your system definitions, the LOGICAL-PATHNAMES
package must be loaded before compiling or loading DEFSY STEM.

Save a Lisp image with DEFSYSTEM loaded, so that you won’t have to reload it each time you
restart Lisp.

4.2. Overview

DEFSYSTEM is loaded into the "MAKE" package, so prefix al the following functions and
variables with a "MAKE:" or the nickname "MK:". This name was chosen to avoid naming
conflicts with various Lisps, many of which already have a "DEFSY STEM" package for their
own particular system construction tool.

The external interface to the defsystem facility consists of the def syst em macro and the
oper at e-on-system function. defsystem is used to define a new system and
oper at e-on-system to compile it and load it. The functions conpil e-system and
| oad- syst emare provided as an aternate way of compiling and loading a system. They call
oper at e- on- syst em with appropriate arguments. The definition of require has been
modified to mesh well with systems defined using def system and is fully backward-
compatible.

To use DEFSY STEM,

1. Write adef syst emform for your system, and save it in afile of type " syst ent'.
If the name of your system is f oo, the file should be named " f oo. systent. You
may want to move the file into one of your central registry directories.

2.Use the function operate-on-system (or conpile-system and
| oad-system) to do things to your system. For example evalutating
(oper at e-on-system "foo" 'l oad) will load the system, while evalutating
(operat e-on-system "foo" 'conpile) will compileit. [If you are going to
load the system and not compile it, you can also use (require "foo") toload
it.]

DEFSYSTEM checks for an appropriately named system definition file first in your current
directory, then in the central registry directories in the order in which they are listed in the
variable *cent r al - regi st ry*. If it finds amatch, it will reload the system definition file if it
has changed since you last loaded the system definition. If the system definition fileislocated in
neither the current directory nor one of the central registry directories, you must explicitly load
the system definition file.

DEFSYSTEM: A "make" for Lisp 29

4.3. Using DEFSY STEM

This section describes al of the basic DEFSYSTEM commands and the variables which control
their behavior. DEFSYSTEM includes functions for defining new systems, compiling systems, and
loading systems.

4.3.1. Defining a System

A system is a set of components with associated properties. The properties include the type of
the component, its name, source and binary pathnames, its package, initiaizations and
finalizations, and the component dependencies, as well as the components of the component.

Thedef syst emmacro is used to define new systems.

def syst em(name &rest definition-body) [Macro]

Defines name to be the name of the system described in definition-body. This nameis
used for all operations on the system. The definition body consists of a sequence of
keyword-value pairs, where the keywords correspond to the properties described
below. These properties determine what files are included in the system, what files
depend on other files, and any features of the overall system, such asits directory or
package. name may be a symbol or a string; if a symbol, the symbol-name is used. The
format of the top level def syst emdefinition parallels that of components, except the
component type is replaced with the symbol def syst em Once asystem is defined,8
certain operations such as loading and compilation may be applied to it.

4.3.1.1. Component Types

There are five types of components, :system :subsystem :nodule, :file, and
cprivate-file.
» Components of type : syst em have absolute pathnames and are used to define a

multi-system system. The toplevel system defined by the def syst em macro is
implicitly of type: syst em

« Components of type : subsyst em have relative pathnames and are used to define
subsystems of a system.

» Components of type : nodul e have pathnames that are relative to their containing
system or module, and may contain a set of files and/or modules. This enables one
to define modules, submodules, and so on.

» Componentsof type: fi | e represent files with relative pathnames.

» Components of type :private-file aso represent files, but with absolute
pathnames. Components of type : private-fil e are useful for having private
copies of one or two files of a system without having to rewrite the entire system
definition or duplicate the entire system directory tree.

8System definitions may be automatically loaded if not defined. See Section 4.5.2.

30 Portable Utilities for Common Lisp

4.3.1.2. Component Names

The name of a component is refered to by other components to indicate that they depend on it.
The name of a component may aso be used as the name of the subdirectory or file associated
with the component. See Section 4.3.1.3 for detalils.

The name of a component may be a symbol or a string. For ease of access the definition of a
system (its component) is stored in a hash table entry corresponding to an uppercase version of
the string or symbol name. If the system name is a symbol, for all other purposes the name is
converted to a lowercase string (system names that are strings are left alone). A system defined
as’ f oo will have an internal name of " FOO' and will be stored in the file " f oo. systent. A
system defined as " Foo" will have an interna name of " FOO' and will be stored in the file
"Foo. systent.

4.3.1.3. Component Pathnames and File Types

The absolute pathnames (for components of type : syst emand : pri vate-fil e) and relative
pathnames (for all other components) of the binary and source files may be specified using the
: sour ce- pat hnane and : bi nar y- pat hnane keywords in the component definition.9 The
pathnames associated with a module correspond to subdirectories of the containing module or
system. If no binary pathname is specified, the binaries are distributed among the sources. If no
source pathname is given for a component, it defaults to the name of the component. Since the
names are converted to lowercase, pathnames must be provided for each component if the
operating system is case senditive (unless the pathnames are al lowercase). Similarly, if a
module does not correspond to a subdirectory, a null-string pathname (" ") must be provided.
One may change this behavior by modifying the variable * sour ce- pat hname- def aul t *. For
example, one could set it to " " instead of ni | to avoid having to specify : sour ce- pat hnane
" in every module if the files are kept in asingle flat directory.

File types (e.g., |isp and fasl) for source and binary files may be specified using the
: sour ce- ext ensi on and : bi nar y- ext ensi on keywords. These file types are inherited by
the components of the system. If the file types are not specified or given as ni | , DEFSYSTEM
makes a reasonable choice of defaults based on the machine type and underlying operating
system.

At system definition time, every relative directory is replaced with the corresponding cumulative
absol ute pathname with all the pathname-components specified.

9Macintosh pathnames are not fully supported at this time. For example, trailing colons must be included in the
pathnames of each module. For system definitions to be portable between UNIX Lisps and Macintosh Common
Lisp, one must use the LOGICAL-PATHNAMES package.

DEFSYSTEM: A "make" for Lisp 31

4.3.1.4. Segregating Binariesfor Different Lisps

The user may wish to maintain different subdirectories for the binaries of different Lisps. The
function af s- bi nary-directory has been provided to imitate the behavior of the @sys
feature of the Andrew File System on systems not running AFS. The @sys feature allows soft
links to point to different directories depending on which platform is accessing the files. A
common setup would be to have the bin directory soft linked to . bi n/ @ys and to have
subdirectories of . bin corresponding to each platform (. bi n/ vax_mach, . bi n/ uni x,
. bi n/ pmax_nmach, etc.).

af s- bi nary-di rect ory (root-directory) [Function]

Returns the appropriate binary directory for use asthe: bi nar y- pat hnanme argument
in the def syst emmacro. For example, if we evaluate (af s- bi nary-directory
“foodir/") onavax running the Mach operating system,
"foodir/.bin/vax_mach/" would be returned.

The functions machi ne-t ype-transl ati on and sof t war e-type-transl ati on are used
to define the directory components corresponding to the values of (machi ne-type) and
(sof t war e-t ype) for particular Lisps.

machi ne-t ype-transl ati on (name &optional dir-component) [Function]
sof t war e-t ype-transl ati on (name &optional dir-component) [Function]

4.3.1.5. Including Foreign Systems

Systems defined using some other system definition tool may be included by providing separate
compile and load forms for them (using the : conpi | e-f ormand : | oad- f or m keywords).
These forms will be run if and only if they are included in a module with no components. Thisis
useful if it isn't possible to convert these systemsto the def syst emformat all at once.

4.3.1.6. Component Packages, Initializations and Finalizations

One may aso specify the package to be used and any initializations and finalizations. Package
usage (specified with the keyword : package) remains in force until the * package* variable
reverts to its old value at the end of the operation on the component. Initializations (specified
with the keyword : i ni ti al | y- do) are evaluated before the system is loaded or compiled, and
finalizations (specified with the keyword : fi nal | y-do) are evaluated after the system is
finished loading or compiling. The argument to the keyword is a form which is evaluated.
Multiple forms may be evaluated by wrapping a progn around the forms.

4.3.1.7. Component Dependencies

The dependencies of a system, module or file are specified with the : depends- on keyword,
followed by alist of the names of the components the system, module or file depends on. The
components referred to must exist at the same level in the hierarchy as the referring component.
This enforces the modularity of the system definition. If module A depends on a file contained
within module B, then module A depends on module B and should be specified as such. This

32 Portable Utilities for Common Lisp

requirement is not enforced in the software, but any use contrary to it will produce unpredictable
results.

Thus the only requirement for how the files are to be organized is that at the level of each
module or system, the dependency graph of the components must be a DAG (directed acyclic
graph). If there are any dependency cycles (i.e., module A uses definitions from module B, and
module B uses definitions from module A), the def syst emmacro will not be able to compute a
total ordering of the files (alinear order in which they should be compiled and loaded). Usually
def syst emwill detect such cycles and halt with an error.

If no dependencies are provided for the system, modules and files, it may load them in any order.
There is no guarantee of loading them in any particular order. Currently, however, it loads them
in serial order, because the topological-sort it uses is a stable sorting method.

The algorithm topologically sorts the DAG at each level in the hierarchy (system level, module
level, submodule level, etc.) to ensure that the system’ s files are compiled and loaded in the right
order. This occurs at system definition time, rather than at system use time, because it probably
saves the user sometime to do it thisway.

4.3.1.8. Load-only and Compile-only Components

One may define components that are load-only and compile-only using the keywords
:load-only t and: conpile-only t.

Load-only components are not compiled during operation : conpi | e. For such components,
loading the component satisfies any demand for recompilation.

Compile-only components are not loaded during operation : conpi | e. The component is either
loaded or compiled, but not both. For such components, compiling the file satisfies the demand
to load it. This isn't as strange as it seems at first. For example, PCL def met hod and
def cl ass definitionswrap an (eval -when (conpile | oad eval) ...) around the body
of the definition, making it pointless in some Lisps to compile and load a file containing only
class definitions.

4.3.1.9. Component Definitions

The components of a system, module or file are specified with the : conponent s keyword, and
are defined in amanner analogous to the way in which a system is defined.

The general format of a component’ s definition is:

<definition> ::= (<type> <name> [:host <host>] [:device <device>]
[: source- pat hnane <pat hnanme>]

[: source-ext ensi on <extensi on>]

[: bi nary-pat hnane <pat hnane>]

[: bi nary-extensi on <extensi on>]

[: package <package>]

DEFSYSTEM: A "make" for Lisp 33

[:initially-do <fornmp]
[:finally-do <fornp]

[: components (<definition>*)]
[: depends-on (<name>*)]
[:load-only t]

[:compile-only t]

[:compil e-form <fornp]
[:load-form <fornp])
. f

<type> ::= :system| :nodule | ile | :private-file

The top level defsystem form does not specify atype, replacing it with the symbol def syst em

In addition, component definitions which are strings or lists whose first element is not a valid

type are assumed to be of type: fil e. Thisalows the user to specify alist of files as alist of
the filenames.

Here are three examples of various component definitions:

(:systemtest
. sour ce- pat hname "/afs/cs. cnmu. edu/ user/ nkant/ Def systenftest/"
:source-extension "lisp"
: bi nary- pat hnane ni
: bi nary- ext ensi on ni
:conponents ((:nodul e basic
. sour ce- pat hnanme ""
:conponents ((:file "primtives")
(:file "macros"
. depends-on ("primtives"))))
(: nodul e graphics
: sour ce- pat hname "graphi cs”
:conmponents ((:file "nacros"
: depends-on ("primtives"))
(:file "primtives"))
: depends-on (basic))))

(: nmodul e graphics
: sour ce- pat hname "graphi cs”
:conponents (("macros" :depends-on ("primtives"))
(:private-file "primtives")))

(: nodul e graphics
. sour ce- pat hnanme "graphi cs"
.conponents ("primtives" "macros" "scanning"))

Thus one would define a system named f oo that depends on systems bar and bl etch as
follows:

(defsystem f oo
. sour ce- pat hname "/ afs/cs. cnu. edu/ user/ nkant/foo/"
:source-extension "lisp"”
: bi nary- pat hnane ni
: bi nary- ext ensi on ni
. conponents ((:nodul e graphics
: sour ce- pat hnanme "graphi cs"
.conponents ("primtives" "nacros" "scanning")))

34 Portable Utilities for Common Lisp

: depends-on (bar bl etch))

This system would load the bar and bl et ch systems before loading any files of the f oo
system. Note that the modularity restrictions require that bar and bl et ch and not modules or
files. Components can depend only on components of the same complexity; thus systems can
depend only on systems.

Also worth stressing is the fact that systems in DEFSYSTEM are structural, unlike the procedural
systems in the Symbolics def syst em So while specifying (: syst em bar) in the body of a
Symbolics def syst emwould include the bar system at that point, in DEFSYSTEM it would be
saying that the bar system has no files. To achieve the same effect one must include the bar

system in the dependency list of the system.

4.3.2. Describing a System

Thefunction descr i be- syst emmay be used to print a description of a system.
descri be- syst em(name &optional (stream * standard-output*)) [Function]

Prints a description of the system to stream. If name is the name of a system, getsit
and prints a description of the system. If name is acomponent, prints a description of
the component.

The function def i ned- syst enms may be used to get alist of al currently defined systems.

4.3.3. Removing a System

The function undef syst emmay be used to remove the definition of a system.
undef syst em(name) [Function]
Removes the definition of the system named name.

4.3.4. Loading and Compiling a System

The function oper at e- on-system is used to compile or load a system, or do any other
operation on a system. At present only compile and load operations are defined, but other
operations such as edit, hardcopy, or applying arbitrary functions (e.g., enscript, lpr) to every file
in the system could be easily added.

The syntax of operate-on-system is as follows:

oper at e- on- syst em(name operation & key force (version *version*) [Function]
(test *0os-test*) (verbose * 0os-verbose*)
(load-source-instead-of -binary *|oad-source-instead-of-binary*)
(load-source-if-no-binary *oad-source-if-no-binary*)
(bother-user-if-no-binary * bother-user-if-no-binary*)
(compile-during-load * compile-during-load*)
dribble (minimal-load * minimal-load*))

DEFSYSTEM: A "make" for Lisp

* system-name is the name of the system and may be a symbol or string. If the
system is not defined, it will be loaded from afile with extension " syst ent'
and name the same as the system, located either in the current directory or in
the central registry, if such afile exists. Otherwise an error will be signalled.

* operationis’ conpi | e (or: conpil e)or’ | oad (or: | oad) or any new
operation defined by the user. If no such operation is defined, an error will be
signalled.

« force determines what files are operated on:
*:rall (ort) specifiesthat all filesin the system should be used

* : new sour ce If the operationis’ conpi | e, compiles only those files
whose sources are more recent than the binaries. If the operation is
" | oad, loads the source if it is more recent than the binaries. This allows
you to load the most up to date version of the system even if it isn't
compiled.

* : new sour ce- and- dependent s usesall filesused by
: new sour ce, plus any files that depend on the those files or their
dependents (recursively).

+ force may also be alist of the specific modules or filesto be used (plus
their dependents).

Thedefault for’ | oad is: al | andfor’ conpil e is
: new sour ce- and- dependent s.

* version indicates which version of the system should be used. If ni | , then the
usual root directory isused. If asymbol, such as’ al pha,’ bet a,’ onega,
: al pha, or’ mar k, it substitutes the appropriate (lowercase) subdirectory of
the root directory for the root directory. If astring, it replaces the entire root
directory with the given directory. (default * ver si on*, whichisni |)

* verboseist to print out what it is doing (compiling, loading of modules and
files) asit doesit. (default ni |)

e testist to print out what it would do without actually doing it. If testist it
automatically setsverbosetot . (default ni |)

» compile-during-load ist to compile source files when loading a system if the
binary filesare missing or old. If ni | it doesn’t compile them, but loads either
the old binaries or the sources. If : quer y (the default), it will ask the user
whether the files should be compiled.

« dribble should be the pathname of a dribble file if you want to keep arecord of
the compilation. (default ni |)

e minimal-load ist to only load those files which haven't already been loaded
yet, asjudged by the file-write-dates of the files. Note that DEFSYSTEM will
notice when files change even if adifferent user compiles the files. (default
m ni mal -1 oad, whichisnil)

* load-source-instead-of-binary ist to force the system to load source files
instead of binary files. (default ni | ')

36 Portable Utilities for Common Lisp

* load-source-if-no-binary ist to have the system load source filesif the binary
fileismissing. (default ni |')

* bother-user-if-no-binary ist to have the system bother the user about missing
binaries before it goes ahead and |oads them if
| oad- source-if-no-binaryist. (defaultt) Timesoutin 60 seconds
unless*use-ti meout s* issettonil .

The conpi | e-system and | oad- syst em functions are just like oper at e- on- syst em
except the operation is hard-coded as : conpil e and : | oad, respectively, so there is no
operation argument. Some users find this interface easier to understand. The function oos is
defined as a synonym for oper at e- on- syst em

For example, one would compile al the changed files in a system named "foo" by typing
(nk: conpi | e-system "foo" :force :new source :mninmal-load t).Oronecould
selectively compile changed files in the system when loading the system from scratch by
invoking (nk: | oad- system "foo" :conpile-during-load :query). To load al the
files in the system, type (nk: | oad- system "fo0"). To compile al the files in the system,
type (k: conpi | e-system "fo00").

An implicit assumption is that if we need to load a file for some reason, then we should be able
to compile it immediately before we need to load it. This obviates the need to specify separate
load and compile dependencies in the modul es.

Note that under this assumption, the example given in the PCL defsystem becomes quite
ludicrous. Those constraints are of the form:
1. C must be loaded before A& B are loaded

2. A& B must be loaded before C is compiled
When you add in the reasonable assumption that before you load C, you must compile C, you get
acycle.

One case is which this might not be true is in a system which worked on the dependency graph
of individual definitions. But we have restricted ourselves to file dependencies and will stick
with that. (In situations where a file defining macros must have the sources loaded before
compiling them, most often it is because the macros are used before they are defined, and hence
assumed to be functions. This can be fixed by organizing the macros better, or including them in
aseparatefile.)

Files which must not be compiled should be loaded in the initializations or finalizations of a
module by means of an explicit load form, or be specifiedas: | oad-only t.

It isaknown bug that DEFSYSTEM may report loading or compiling a system or module even if it
doesn’t do anything with the files. So if DEFSYSTEM reports loading a module, but doesn’t report
loading any files in the module, it hasn’t touched the files in the module. In a future version of
DEFSYSTEM we may change the message to say that it is checking the system or module.

DEFSYSTEM: A "make" for Lisp 37

4.3.5. Other Operationson Systems

To define a new operation, write a function with parameters component and force that performs
the operation. The function conponent - pat hnane may be used to extract the source and
binary pathnames from the component. (conponent - pat hnane takes parameters component
and file-type, where file-type is either : source or : bi nary, and returns the appropriate
pathname.) If the component has "changed" as a result of the operation, t should be returned;
otherwise nil . See the definition of conpile-file-operation and
| oad-fil e-operati on for examples.

Then install the definition using conponent - oper ati on, which takes as parameters the
symbol which will be used to name the operation in oper at e- on- syst em and the name of the
function. For example, here are the definition of the’ conpi | e and : conpi | e operations:

(conmponent -operation :conpile 'conpile-and-|oad-operation)
(conponent -operation ’'conpile ’'conpile-and-|oad-operation)

The user could define operations such as’ har dcopy and’ edi t in this manner.

4.3.6. Changesto Require

This defsystem interacts smoothly with the r equi r e and pr ovi de facilities of Common Lisp.
oper at e- on- syst emautomatically provides the name of any system it loads, and uses the new
definition of r equi r e to load any dependencies of the toplevel system.

One may prevent DEFSYSTEM from redefining require by setting the variable
dont - r edef i ne-requi re tot before compiling DEFSY STEM.

DEFSYSTEM adds three new optiona arguments to r equi r e. Thus the new syntax of r equi r e
isasfollows:

new-r equi r e (system-name & optional pathname definition-pname [Function]
default-action (version *version*))

If pathname is provided, the new r equi r e behaves just like the old definition.
Otherwiseit first tries to find the definition of the system-name (if it is not already
defined it will load the definition fileif it isin the current-directory, the central-registry
directory, or the directory specified by definition-pname) and runs

oper at e- on- syst emon the system definition. If no definition isfound, it will
evaluate the default-action if thereis one. Otherwise it will try running the old
definition of r equi r e on just the system name. If all elsefails, it will print out a
warning.

4.3.7. DEFSYSTEM Variables

The following variables control the default operation of DEFSYSTEM. Many of the program
parameters set by modifying these variables can aso be changed by specifying keyword
arguments to DEFSY STEM functions.

38 Portable Utilities for Common Lisp

def syst em ver si on "v2.4 22-MAY-91" [Variable]
Current version number/date for DEFSY STEM.
central -registry () [Variable]

Central directory of system definitions. May be either a single directory pathname, or a
list of directory pathnames to be checked after the local directory.

bi n- subdi r ".bin/" [Variable]
The subdirectory of an AFS directory where the binaries are really kept.

tel | -user-when-done () [Variable]
If t, systemwill print". .. DONE" at the end of an operation.

00s- ver bose () [Variable]
If t , oper at e- on- syst emdescribeswhat it isdoing asit doesit.

00s-test () [Variable]

If t , oper at e- on- syst emrunsin atest mode where it describes what it would do,
but doesn’t actually do it.

| oad- sour ce-i f-no-binary () [Variable]
If t , system will try loading the source if the binary is missing.

bot her -user-if-no-bi nary t [Variable]
If t, the system will ask the user whether to load the source if the binary is missing.

| oad- sour ce- i nst ead- of - bi nary () [Variable]
If t, the system will load the source file instead of the binary.

m ni mal -1 oad () [Variable]

If t , the system tries to avoid reloading files that were already loaded and up to date.

oper at i ons- propagat e-t o- subsyst ens t [Variable]
If t , operationslike: conpi | e and : | oad propagate to subsystems of a system that
are defined either using a component-type of :system or by another defsystem form.

fil ename- ext ensi ons (car [Variable]
(quote
(("lisp™ . "fad™) ("lisp" . "lbin"))))
Filename extensions for Common Lisp. Each is a read-time conditionalized cons of the

form (Source-Extension . Binary-Extension). If the Lisp is unknown (asin
f eat ur es not known), defaultstol i sp and| bi n.

syst em dependenci es- del ayed t [Variable]

If t , system dependencies of top-level systems are expanded at run time. Thereislittle
support for not delaying the expansion of top-level system dependencies, so this
variable should not be set toni | .

provi di ng- bl ocks-1 oad- propagati on t [Variable]

If t, if asystem dependency exists (was provided using pr ovi de) in* nodul es*, itis
not loaded.

DEFSYSTEM: A "make" for Lisp 39

4.4. An Example of Using DEFSYSTEM

This section gives an example of using def syst em for the files in the following directory
structure:

% du -a test
test/fancy/ macros.lisp
test/fancy/primtives.lisp
test/fancy
test/macros.lisp
test/primtives.lisp
test/ graphi cs/ macros.lisp
test/graphics/primtives.lisp
t est/ graphics
test/os/ macros.lisp
test/os/primtives.lisp
test/os

2 t est

RPWRRPRWORRRRWRER

First we define the system t est to correspond to the file dependency structure:

(defsystemtest
: sour ce- pat hname "/ afs/cs. cmu. edu/ user/ nkant/ Def systentest/"
:source-extension "lisp"
: bi nary- pat hnane ni |
: bi nary- ext ensi on ni
. conponents ((:nodul e basic
. sour ce- pat hnanme ""
:conponents ((:file "primtives")
(:file "macros"
:depends-on ("primtives"))))
(: nodul e graphics
: sour ce- pat hnanme "graphi cs”
:conmponents ((:file "nacros"
. depends-on ("primtives"))
(:file "primtives"))
: depends-on (basic))
(: nodul e fancy-stuff
: sour ce- pat hnane "fancy"
:conponents ((:file "nmacros”
:depends-on ("primtives"))
(:file "primtives"))
: depends-on (graphics operating-systenj)
(: nodul e operating-system
. sour ce- pat hname "os"
:conponents ((:file "primtives")
(:file "macros"
:depends-on ("primtives")))
: depends-on (basic)))
: depends-on nil)

Then we may use oper at e- on- syst emto compile and load the system.
<cl > (operate-on-system’test 'conpile :verbose t)

; - Conpiling system"test"
; - Conpi ling nodul e "basic"

40

Portable Utilities for Common Lisp
; - Conpiling source file
; "/ afs/cs. cnu. edu/ user/ nkant/ Def system test/primtives.lisp"
; - Loading binary file
; "/ afs/cs.cmu. edu/ user/ nkant/ Def systenftest/primtives.fasl"
; - Conpiling source file
; "/ afs/cs.cmu. edu/ user/ nkant/ Def systeni t est/ nacros. |isp"
; - Loading binary file
; "/ afs/cs.cmu. edu/ user/ nkant / Def systenf t est/ nmacros. fasl "
; - Conpiling nodul e "graphics"
; - Compiling source file
; "/ afs/cs.cmu. edu/ user/ nkant/ Def systenf test/ graphics/primtives.lisp"
; - Loading binary file
; "/ afs/cs.cmu. edu/ user/ nkant/ Def systenftest/ graphics/primtives.fasl"
; - Conpiling source file
; "/ afs/cs. cmu. edu/ user/ nkant / Def syst enif t est/ graphi cs/ macros. |isp”
; - Loading binary file
; "/ afs/cs.cmu. edu/ user/ nkant / Def syst eni t est/ graphi cs/ macros. fasl"
; - Conpiling nodul e "operating-systent
; - Compiling source file
; "/ afs/cs.cmu. edu/ user/ nkant/ Def systenmtest/os/primtives.lisp"
; - Loading binary file
; "/ afs/cs.cmu. edu/ user/ nkant/ Def systenmltest/os/primtives.fasl"
; - Conpiling source file
; "/ afs/cs.cmu. edu/ user/ nkant / Def systenif test/os/ nmacros.|isp"
; - Loading binary file
; "/ afs/cs.cmu. edu/ user/ nkant/ Def syst eni t est/ os/ nacros. fasl "
; - Conpiling nodule "fancy-stuff"
; - Conpiling source file
; "/ afs/cs.cmu. edu/ user/ nkant/ Def systenftest/fancy/primtives.lisp"
; - Loading binary file
; "/ afs/cs.cmu. edu/ user/ nkant/ Def systenftest/fancy/primtives.fasl"”
- Conpiling source file
; "/ afs/cs. cnu. edu/ user/ nkant/ Def systenif test/fancy/ macros.|isp"
; - Loading binary file
; "/ afs/cs.cmu. edu/ user/ nkant/ Def systeni test/fancy/ nacros. fasl"
; - Providing systemtest
NI L

<cl > (operate-on-system’test 'l oad :verbose t)

- Loadi ng system"test"
- Loadi ng nodul e "basic"
- Loading binary file
"/ afs/cs.cmu. edu/ user/ nkant/ Def systenftest/primtives.fasl"
- Loading binary file
"/ afs/cs.cmu. edu/ user/ nkant/ Def systeni t est/ nacros. fasl "
- Loadi ng nodul e "graphics"
- Loading binary file
"/ afs/cs. cnu. edu/ user/ nkant/ Def systenf t est/ graphics/prinitives.fasl"
- Loading binary file
"/ afs/cs.cmu. edu/ user/ nkant/ Def systeni t est/ graphi cs/ macros. fasl"
- Loadi ng nodul e "operating-systent
- Loading binary file
"/ afs/cs.cmu. edu/ user/ nkant/ Def systemtest/os/primtives.fasl"
- Loading binary file
"/ afs/cs. cmu. edu/ user/ nkant / Def syst enf t est/ os/ nacros. fasl "
- Loadi ng nodul e "fancy-stuff"

DEFSYSTEM: A "make" for Lisp 41

- Loading binary file
"/ afs/cs. cnu. edu/ user/ nkant/ Def system test/fancy/primtives.fasl"
- Loading binary file
"/ afs/cs.cmu. edu/ user/ nkant/ Def systenif test/fancy/ nacros. fasl"
- Providing systemtest
NI L

4.5. Implementation Notes

In this section we discuss some issues relating to the implementation of DEFSY STEM.

4.5.1. Structural vs. Procedural System Construction Tools

There are two major types of system construction tools, procedural and structural. Procedural
tools define a system as a sequence of explicit construction steps, perhaps augmented with some
description of structural dependencies. The UNIX nake [1] and Symbolics def syst em
[3] [4] are examples of thiskind of tool. Structural tools define a system in terms of its structure.
Instead of describing how modules are to be constructed, a structural definition describes how
the modules reference each other, and infers the order of construction operations from the
reference graph. The BUILD system [5] is an example of a structure-based system definition tool.

As noted by Robbins in [5], a procedura definition of a system is harder to understand than a
structural definition. In addition, there are severa benefits to the separation of construction
knowledge from systems knowledge that occurs in structural system construction tools:

« Such tools can be extended by adding new operations on systems without altering

existing system definitions. Since the tool is not constrained to a particular set of
embedded tasks, the users are free to define new operations.

* When defining a new operation, many low level details (e.g., compilation order) are
hidden from the task definer, simplifying the definition of new operations.

« Structural tools are a more natural way for users to describe systems, alowing them
to concentrate on the overall structure of the system. Users can ignore low level
details of the construction operations when writing a system. The explicit
declaration of high level system relationshipsis aso much easier to understand.

* It is much easier to automatically generate structural descriptions of systems. For
example, XREF includes tools to assist the user in creating a system definition by
producing the file dependency graph.

Accordingly, we chose to design DEFSYSTEM as a structure-based system construction tool.

The user supplies DEFSYSTEM with a description of the structure of the system, and DEFSY STEM
infers the compilation steps. The system definition describes how modules reference each other
instead of how they are constructed. From a structural description (module A refers to module B)
it can infer the procedural requirements (a change to module B implies that module A should be
recompiled, but a change to module A does not imply that module B should be recompiled).

Unfortunately, DEFSYSTEM’s mechanism for describing operations is not as elegant or as general

42 Portable Utilities for Common Lisp

as BUILD's. The knowledge about Lisp compilation and loading, although largely isolated into
separate operation definitions, is still partially embedded in the definition of
oper at e-on-syst em S0 if a new operation is sensitive to reference types other than those
provided for the compile and load operations, it may require revising the definition of
oper at e- on- syst emas well as the system definitions.10 However, DEFSYSTEM is sufficient
for at least compilation and loading in Lisp, which is where the mgjor need lies.

4.5.2. Retrieving System Definitions

It is desirable that a system definition be automatically loaded if not already present when its
name is referenced by the user or a system definition. f i nd- syst emimplements this behavior,
loading the definition of the system f oo from the file " f oo. syst ent' in the central registry.
fi nd- syst emcalls conput e- syst em pat h to determine the pathname of the file containing
the system definition.

fi nd- syst em(system &optional (mode :ask) definition-pname) [Function]

Returns the system named system. If the system was not previously defined or the
version on disk is newer, f i nd- syst emtriesto load the system definition. This
allowsoper at e- on- syst em conpi | e- syst em and | oad- syst emto work on
non-loaded as well as loaded system definitions. definition-pname is the pathname for
the file containing the system definition, if provided. Otherwisef i nd- syst emchecks
for afile matching the system name first in the current directory and then in the central
registry directories. If the variable * r el oad- syst ens-from di sk* isni |,
find-syst emwill not reload the system definition of a defined system from disk if
the version on disk is newer.

4.5.3. Appending Directories

The append-di rect ori es function is used to tack a subdirectory onto a pathname. Sadly,
Common Lisp lacks a primitive to do this. Our definition will work for all Lisps that conform to
the conventions on structured directories[7, Section 23.1.3]. Minor incompatibilities with the
standard are fixed using read-time conditionalization. Major aberrations are handled either using
special purpose code, or using
(namestring (nerge-pathnames (or absolute-directory "")
(or relative-directory "")))

which seems to work surprisingly well in VM S-based VaxLisp.

The output from the function t est - new append-di rect ori es may be useful for verifying
correct operation of this primitive when porting it to new Lisps.

OFor example, we currently assume that compilation-load dependencies and if-changed dependencies are
identical. However, in some cases this might not be true. For example, if we change a macro we have to recompile
functions that depend on it, but not if we change a function. Splitting these apart (with appropriate defaulting) would
be nice, but not worth doing immediately since it may save only a couple of file recompilations, while making the
defsystem much more complex.

DEFSYSTEM: A "make" for Lisp 43

See Appendix |1 for adiscussion of this and other problems with Common Lisp.

append- di rect ori es (absolute-directory relative-directory) [Function]

Thereisno Common Lisp primitive for tacking a subdirectory onto adirectory. We
need such a function because def sy st emhas both absolute and relative pathnames in
the modules. We assume that absolute-directory is a directory, with no filename stuck
ontheend. relative-directory, however, may have afilename stuck on the end.

4.5.4. Defining a System

Defining a system invokes several functions. creat e- conponent is the main routine for
creating a representation. It takes care of inheriting appropriate attributes from parent
components, initializes the component’s pathnames using cr eat e- conponent - pat hnanes
and gener at e- conponent - pat hnane, recursively creates any child components using
expand- conponent - conponent s and expand- conponent - def i ni ti on, ties together the
dependency graph using | i nk-conmponent - depends-on, and topologically sorts the
dependency graph using t opol ogi cal -sort.

4.5.5. Operating on a System

oper at e- on- syst emcallsoper at e- on- conponent to apply the operation to the system and
its components. oper at e- on- conponent sets up the component’s package, propagates the
operations to the system’s dependencies if *oper at i ons- pr opagat e-t o- subsyst ens* ist

using oper at e- on- syst em dependenci es, and does the component’s initializations. Then,
if the component isof type:file or:private-file it appliesthe operation directly to the
component. Otherwise, it calls oper at e- on- conponent s to work on the components of the
component. Finaly, it does the component’ s finalizations and provides the system.

The function conpi | e- and- | oad- oper at i on corresponds to the : | oad operation while the
function | oad-fil e-operation corresponds to the :conpile operation. They use
needs- conpi | ati on and needs-| oadi ng to determine if the component needs to be
compiled or loaded based on its compile and load times. The compile time is checked by
comparing the file-write-date of the binary file with that of the source file, while the load-time is
cached in the component itself. The del et e- bi nari es- oper ati on function corresponds to
the: del et e- bi nari es operation, which deletes all the binary files associated with a system.

4.5.6. Querying the User with Timeouts

Since compiling and loading large systems can take a considerable amount of time, some users
would prefer to avoid having to babysit the compilation. DEFSYSTEM includes a function
y-or-n-p-wai t whichissimilar to the Common Lisp y- or - n- p but which will time out after
a specified interval of time. All queries from DEFSYSTEM to the user are through
y-or-n-p-wait with reasonable defaults, allowing the user to eat dinner during the
compilation without worrying whether the compilation hung up on a query a few seconds after

44 Portable Utilities for Common Lisp

the user |eft.

Some Lisps, however, have broken definitions of r ead- char - no- hang and cl ear -i nput,
which can result in DEFSYSTEM’S ignoring user input to the queries. Also,
get-internal -run-time conses considerably in some Lisps!! with the result that
y-or-n-p-wait conses several megabytes per minute. The variable *use-ti meout s* has
been provided to allow the user to turn off the timeout behavior of y- or - n- p-wai t, in which
caseit worksjust likey- or - n- p.

use-ti meout s t [Variable]

If t , timeoutsiny- or - n- p-wai t are enabled. Otherwise it behaveslikey- or - n- p.
Thisis provided for users whose Lisps don’t handle r ead- char - no- hang properly.

cl ear-i nput - bef ore- query t [Variable]
If t,y-or-n-p-wait will clear the input before printing the prompt and asking the
user for input.
y-or-n-p-wait (&optiona (default #\y) (timeout 20) format-string [Function]
&rest args)

y-or-n-p-wait printsthe message, if any, and reads characters from * quer y- i o*
until the user entersy, Y or a space as an affirmative, or either n or N as anegative
answer, or the timeout occurs. It asks again if you enter any other characters.

4.5.7. Debugging

The functionsfi | es-whi ch- need-conpil ationandfil es-in-systemmay be useful for
debugging an incorrect system definition.

fil es-whi ch-need-conpil ati on (system) [Function]
Returns alist of filesin systemwhich currently need to be compiled to be brought up
to date.
files-in-system(name &optional (force:al) (type :source) version [Function]
&aux system)

Returns alist of al filesin the system named namein load order.

11500 bytes per call is not unusual.

LOGICAL-PATHNAMES:. Portable Pathnames 45

5. LOGICAL-PATHNAMES: Portable Pathnames

The LOGICAL-PATHNAMES system is a portable implementation of the X3J13 June 1989
specification for logical pathnames, as documented in [7, section 23.1.5]. LOGICAL-PATHNAMES
lets programs refer to pathnames and files in a portable manner. The logical pathnames are
mapped to physical pathnames by a set of implementation-dependent and site-dependent rules.

5.1. Overview

Logical pathnames allow large programs to be moved between sites by separating pathname
reference from actual file location. The program will refer to files using logical pathnames. At
each site, a user will specify a set of trangations which map from the logical pathnames to the
physical pathnames used on the device.

Logical pathnames provide a uniform convention for filesystem access, with the following
properties:
1. Pathname Portability. The program specifies a pathname in a conventional format
which may be mapped in areasonably literal manner onto a variety of filesystems.

2. Pathname Aliasing. Logical pathnames introduce alevel of indirection in pathname
reference, so that the files may exist in different locations in the different
filesystems. For example, the root directory might change. The trandations make
such a change easy to implement.

3. Cross-host Access. The files need not al exist on the same physical host, but may
still be refered to as one logical unit.

This implementation of logical pathnames provides support for parsing and generating physical
pathnames for UNIX, VMS/VAX, Symbolics Lisp Machines and Tl Explorers, and is easily
extended to handle additional platforms.

The LOGICAL-PATHNAMES system may be used with the DEFSYSTEM program.

5.1.1. L ogical Pathname Syntax
Logical pathnames employ the following syntax:

wi | dcar d-word :
w | dcard-inferiors ::

[host:] [;] {directory ;}* [nane] [. type [. version]]
where
host = word
directory = word | wildcard-word | wildcard-inferiors
nane = word | wildcard-word
type = word | wildcard-word
version = word | wildcard-word
wor d = {letter | digit | -}*

[word] * {word *}* [word]

46 Portable Utilities for Common Lisp

A wildcard-word of * parsesas: wi | d; al others as strings. These definitions may be extended
(e.g., "newest " parsing as: newest) by defining new canonical types.

5.1.2. Incompatibilities with the X3J13 Specification

Thel ogi cal - pat hnane structure is not defined as a subclass of pat hnane since we have no
guarantee about the format of pat hnane (i.e., whether it is a defstruct or class definition, what
are the types of its dots, etc.).12 Many Lisps will be able to replace the definition of
physi cal - pat hnanme with their definition of pat hname by substituting the string " pathname”
for "physical-pathname” and deleting and/or renaming some of the definitions in
LOGICAL-PATHNAMES.

The X3J13 specification does not set a standard for the manner in which wildcards are trand ated.
We use reversible wildcard pathname trandation, similar to that used in the Symbolics logical
pathnames.

5.2. Installing LOGICAL-PATHNAMES

Before loading LOGICAL-PATHNAMES, you may wish to perform the following implementation-
dependent changes.

* Set | ocal - host -t abl e to the pathname of the local host table if you're using a
host table to determine physical host types. Otherwise, you may wish to redefine the
function physical -host-type to return the physica host types in an
implementation-dependent manner. You may aso wish to change the default
physical host type.

» Set the value of di rect ory-structure-type to match the type of the directory
dlot of pathname in your Lisp. This should only be necessary if you're porting it to a
new Lisp.

* Set *1 ogi cal -transl ati ons-di rect ory* to be the pathname of the directory
where trandation files are kept.

* Define any additional canonical types and translation rules you wish.
After loading LOGICAL-PATHNAMES, load the physica host table using

| oad- physi cal - host ab and any desired trandations using
| oad- | ogi cal - pat hname-transl ati ons.

If you intend to use LOGICAL-PATHNAMES with DEFSYSTEM, you must load it before compiling
or loading DEFSY STEM.

12The |atest version of Common Lisp tightened up the structure of pathnames, but we want to be compatible with
current Lisps.

LOGICAL-PATHNAMES:. Portable Pathnames 47

5.3. Using LOGICAL-PATHNAMES

This section discusses the basics of using LOGICAL-PATHNAMES, with an emphasis on
differences between this implementation and the X3J13 specification. See[7, section 23.1.5] for
detailed documentation on logical pathnames.

Most of the differences between this implementation and the X3J13 specification are either
enhancements or due to the problems of trying to ensure compatability with current Lisps.

For example, nearly every Lisp has a different representation for pathnames, since this was
rather loosely specified in[6]. In some Lisps pathnames are classes and in some they are
structures, and the slots of a pathname may have arbitrary types, especialy the directory slot.
Depending on the Lisp, the directory slot may be a list, vector, simple-vector, string, keyword,
and/or ni | . If alist or a vector, the items in the list may be strings, keywords (for canonical
types), or ni | . The first item in the list may or may not be a special keyword (e.g., : rel ati ve
or : absol ut e), with different keywords in different Lisps (e.g., some substitute : r oot for
: absol ut e).13

5.3.1. Physical Host Types

Since the syntax of a pathname depends on the type of physical host, and such pathnames may
be used in the trandations, 14 LOGICAL-PATHNAMES needs to be able to determine the type of the
physical host in order to trandlate a logical pathname. The function physi cal - host -t ype
provides a mechanism for determining the host type of a physical host.

13This will be remedied somewhat by X3J13's June 1989 specification of the pathname component format for
structured directories [7, section 23.1.3]. However, current Lisps do not yet comply with this vote.

14The X3J13 specification states that the to-wildnames used in the translations can be anything coercible to a
pathname by application of the function pat hnane. However, this realy leaves open the question of whether the
to-wildnames must be written only in the syntax of the Lisp implementation’s underlying operating system, or
whether the to-wildnames may be in the syntax of the target physical host. For example, if the following translations
are acceptable,

(setf (I p:physical-host-type "U") :unix)
(setf (I p:physical-host-type "MY-LISPM') :synbolics)
(setf (I p:logical-pathnane-translations "prog")
" (("RELEASED; *. *, =" "U /sys/bin/my-prog/*.*.*")
(" EXPERI MENTAL; * . *. *" "MY-LI SPM >my-prog>*.*.*")))

then the Lisp implementation must be able to parse both UNIX and Symbolics pathnames. The second example in
Section 5.4 which is taken from [7] seems to indicate that this is the case. On the other hand, Steele's example of a
UNIX system that doesn’'t support : Wi | d-i nferiors would imply that the implementation of logical
pathnames is relying on the underlying operating system to handle the translation of wildcards, and therefore the
to-wildname must be acceptable to the underlying operating system.

In any event, since the intent is for LOGICAL-PATHNAMES to be portable, we parse several common pathname
syntax formats and rely on the underlying operating system as little as possible. As a result, we need a mechanism
for determining the host type of a physical host.

48 Portable Utilities for Common Lisp

physi cal - host -t ype (host) [Function]
Returns a keyword that represents the host type of the physical host host.
(setf physical -host-type) (type) [Setf Mapping]

Sets the host type of the physical host host to type.

The function | oad- physi cal - host ab may be used to set the host types for a collection of
physical hosts from a namespace table. The physical host namespace table is compatible with
both VMS and Symboalics host tables. The host table consists of a series of lines, one per host, in
the following format:

HOST NAME, CHACS- #, STATUS, SYSTEM TYPE, MACHI NE- TYPE, NI CKNAMVES
Lines that don't begin with "HOST" are ignored. NAME and SYSTEM TYPE are required; all
others are optional (but delimiting commas are still required). SYSTEM TYPE specifies the

operating system run on the host. Common values are: LI SP, LI SPM UNI X, MACH, VM8, and
EXPLORER.

| ocal - host - t abl e "nethosts.txt" [Constant]
Default name of the local physical host namespace.

| oad- physi cal - host ab (&optional (local-hostab |ocal-host-table)) [Function]
][_oads the physical host namespace table. Can parse VM S and Symbolics host table
ormats.

If the Lisp implementation has a different mechanism for determining the host type of a physical
host, the user should substitute a different definition for physi cal - host - t ype.

5.3.2. Logical Pathname Tranglations

The trandations for a logical host are the main mechanism for transforming a logical pathname
into aphysical pathname.

A trangdlation is alist consisting of a from-wildname and a to-wildname. The former is a logical
pathname whose host is understood to be the logical host of the trandation (i.e., the host of the
from-pathname need not be explicitly specified in the trandation). The latter is any pathname. If
the to-wildname is a logical pathname, t r ansl at e- | ogi cal - pat hnane will retrandate the
result, repeatedly if necessary.

The tranglations are stored in a list according to host, and may be retrieved using the function
| ogi cal - pat hnane-transl ati ons and set using (setf
| ogi cal - pat hnane-transl ati ons). Since trandations are searched in the order listed,
more specific from-wildnames must precede more general ones.

| ogi cal - pat hname-transl ati ons (host) [Function]

If host has been defined as alogical pathname host name by set f of
| ogi cal - pat hname-t r ansl at i ons, thisfunction returnsthe list of trandations for
the specified host. Otherwiseit signals an error.

LOGICAL-PATHNAMES:. Portable Pathnames 49

(setf |ogical-pathname-transl ations) (trandations) [Setf Mapping]

(setf (logical-pathnane-transl ations host) trandations) setsthelist of
tranglations for the logical pathname host to trandations. If host is a string that has not
previously been used as alogical pathname host, a new logical pathname host is
defined; otherwise an existing host’ s translations are replaced. Logical pathname host
names are compared with string-equal.

5.3.3. Loading L ogical Pathname Translations

Trandations for a logicd host may be loaded using the function
| oad- | ogi cal - pat hnane-transl ations. If *| ogi cal -transl ati ons-directory* is
defined, | oad- | ogi cal - pat hnane-transl ati ons will check for an appropriately named
trandationsfilein that directory.

| ogi cal -transl ati ons-di rectory () [Variable]
Directory where logical pathname tranglations are stored.
| oad- | ogi cal - pat hnanme-transl ati ons (host) [Function]

Loads the logical pathname trandations for host named host if the logical pathname
trangations are not already defined. First checks for afile with the same name as the
host (lowercase) and type "t r ansl at i ons" in the current directory, then the
trandations directory. If it finds such afileit loadsit and returnst , otherwise it signals
an error.

5.3.4. Additional Transformations

The function translate-logical-pathnane may need to perform additiona
transformations on the pathnames, besides those specified by the trandlations. For example, the
file system may require that pathnames include only uppercase letters, that hyphens not be used,
or that filenames be of limited length. In addition, the user may want file types to be translated to
local naming conventions. These additional transformations are implemented by translation rules
and canonical types.

5.3.4.1. Trandation Rules

Trandation rules are used to change the case of a pathname, to substitute one character for
another, and to replace particular directory components and file names. The macro
define-transl ati on-rul e isused to define trandation rules for a particular host.

define-transl ati on-rul e (host-type & key case char-mappings [Macro]
component-mappings version-case type-case
name-case component-case)

Defines tranglation rules for hosts of type host-type. case may be: unchanged
(unchanged), ni | (use default case), : upper,: | ower,or: capitalize.
char-mappingsisalist of character substitutions which occur in parallel.
component-mappingsisalist of string substitutions.

50 Portable Utilities for Common Lisp

For example, the following rule changes VMS pathnames into uppercase and substitutes
underscores for hyphens.

(define-translation-rule :vms
. case :upper
:char-mappings ((#\ - #)))

5.3.4.2. Canonical Types

Canonical types are used to trandate surface forms according to local naming conventions. For
example, the filename extensions "l sp”, "l i sp™ and "I " denote Lisp source files in different

Lisps. The canonical type: | i sp expresses the commonality among these surface forms.

The def i ne- canoni cal macro may be used to define new canonical types. The functions
canoni cal i ze and sur f ace- f or mmay be used to convert to and from canonical types. For
example, we may define: wi | d asthe canonical type for "*" by evaluating

(define-canonical nane :wild "*")
(define-canonical type :wild "*")
(define-canonical version :wild "*")

Then (canoni calize "*" :unix 'type) returns: wi | d. Note that we must define it once

for each component of a pathname, whether pathname-type, pathname-version, pathname-name,
or component of a directory.

def i ne- canoni cal (level canonical default & body specs) [Macro]

Defines anew canonical type. level specifies whether it isacanonical t ype, ver si on,
name, or conponent . default is a string containing the default surface type for any
kind of host not mentioned explicitly. The body contains alist of specs that define the
surface types that represent the new canonical type on each host. For systems with
more than one possible default surface form, the form that appears first becomes the
preferred form for the type.

sur f ace- f or m(canonical host-type &optional (level (quote type))) [Function]
Given the canonical form of some canonical type, replaces it with the appropriate
surface form.

canoni cal i ze (surface-form host-type & optional (level (quote type))) [Function]

Given the surface form of some canonical type, replacesit with the appropriate
canonical type.

5.3.5. Using L ogical Pathnames

The LOGICAL-PATHNAMES system redefines several functions that use pathnames to first check
if the host is a logica host, and if so, apply the trandations for the host using
transl at e- 1 ogi cal - pat hnane. The origina function is then called on the trandated
pathname. Accordingly, the user rarely has to manually trandate a logical pathname to the
corresponding physical pathname, but may do so by calling t r ansl at e- | ogi cal - pat hnane
directly.

LOGICAL-PATHNAMES:. Portable Pathnames 51

t ransl at e- 1 ogi cal - pat hnane (logical-pathname & optional [Function]
(output-format * transl ation-output*))

Trandates alogical pathname to the corresponding physical pathname. The pathname
argument isfirst coerced to alogica pathname, if possible. If the coerced argument is
alogical pathname, the first matching translation (according to

| ogi cal - pat hnane- mat ch- p) of the logical pathname host is applied. If the result
isaphysical pathnameit is returned, otherwise this process is repeated until the result
isfinally aphysical pathname. If no translation matches alogical pathname, or the
resolution process loops, an error issignaled. t r ansl at e- | ogi cal - pat hname may
perform additional transformations, as specified by the translation rules and canonical

types.
| ogi cal - pat hname- mat ch- p (logical-pathname from-pathname) [Function]
Returnst if the logical pathname matches the test pathname.

5.3.6. LOGICAL-PATHNAMES Variables

The variablesin this section control the operation of LOGICAL-PATHNAMES.
*transl ati on- out put * :namestring [Variable]

Specifies whether the output of tranglate-logical -pathname should be a namestring
(: nanest ri ng), apathname made with | i sp: make- pat hnane (: pat hnane), or as

is(: as-is).

war n- about - host -type-col I i si ons t [Variable]
Warn user when alogical host type definition collides with a physical host type
definition.

5.4. Examples of Using LOGICAL-PATHNAMES

This section gives several examples of the use of logical pathnames. They are taken from [7,
section 23.1.5.4].

The first example shows how to specify the root of the physical directory tree that corresponds to
the logical pathnames. Note that we have to declare the type of the physical host "MY -LISPM".
(setf (I p:physical-host-type "MY-LISPM) :synbolics)

(setf (Ip:1ogical-pathnane-translations "foo")
T((MEE, xR "MY- LI SPM >l i brary>foo>**>")))

When using alogical pathname, we can trandate it witht r ansl at e- | ogi cal - pat hnane.

<cl > (I p:transl ate-1|ogi cal - pat hnane "foo: bar; baz; rum quux. 3" : nanestring)
"My- LI SPM >l i br ar y>f oo>bar >baz>num quux. 3"
Many of the functions that use pathnames, such as| oad or del et e-fi | e, have been redefined
tousetransl at e-1 ogi cal - pat hnane if the host of the pathname isalogical host. Note how
transl at e-1 ogi cal - pat hname takes an additional argument (:namestring or

52 Portable Utilities for Common Lisp

: pat hname) to specify whether a namestring or actual pathname is returned.1®

The next example illustrates splitting a logical host across two physical hosts and translating the
type . MAI L to . MBX.16 Since this UNIX file system doesn’t support : wi | d-i nferi ors in the
pathname directory, each directory level must be translated individually.1?

(setf (I p:physical-host-type "U") :unix)
(setf (I p:physical-host-type "V') :vns)
(setf (Ip:logical-pathnanme-translations "prog")
" (("RELEASED; *. *, *" "U. /sys/bin/ny-prog/")
(" RELEASED; *; *. *.*" "U. /sys/bin/ny-prog/*/")
(" EXPERI MENTAL; *.*_ *" "U:/usr/ Joe/ devel opnent/ prog/")
(" EXPERI MENTAL; DOCUMENTATI ON; *. *. *" "V: SYS$DI SK: [JOE. DCC] ")
(" EXPERI MENTAL; *; * * *" "U /usr/Joe/ devel opnent/ prog/ */")
("MAIL; **;* MAIL "V: SYS$DI SK: [JOE. MAI L. PROG. . .] *. MBX")))

Using these trand ations, we can obtain pathnames for either the UNIX or VMS physical hosts.

<cl > (I p:transl ate-1ogi cal - pathnane "prog: mail ; save;ideas. mail .3
> namestring)

"V: SYS$DI SK: [JOE. MAI L. PROG. SAVE] | DEAS. MBX. 3"

<cl > (I p:transl ate-1ogical - pat hnane "prog: experi nental ; spreadsheet.c"
:nanestring)

"U. /usr/ Joel/ devel opnent/ prog/ spreadsheet. c"

The last three examples demonstrate how logical pathnames may be used to shorten file names to
conform with afile system with limited-length file names.

(setf (I p: | ogi cal - pat hnarre transl ati ons "prog")
"(("CODE; *.*.*" /I|b/prog/)))
<cl> (I p:transl ate-1ogi cal - pat hnane "prog: code; docunentation.lisp”
> nanest ring)
"/1i b/ prog/docunentation.lisp"”

(setf (I p: | ogi cal - pat hnamne- transl ati ons "prog")
(" OODEDOCUI\/ENTATIO\I* *! “/1iblprog/docum *")
("CODE; *.*.*" “"/liblprog/")))
<cl > (I p:transl ate-1ogi cal - pat hnane "prog: code; docunentation.|isp"
: namest ring)
"/1ib/prog/documlisp"

(setf (Ip:logical-pathname-translations "prog")
C((UEF;x LISP.*" (I p: | ogi cal - pat hname "PROG **;*.L.*"))
("**;*. FASL.*" , (I p:1logical-pathnane "PROG **;*.B.*"))

I5This is an extension to the X3J13 specification. When redefining functions that use pathnames, it was felt that
providing a trandated namestring would be safer than providing an actual pathname.

16The type trandations could aso be accomplished by defining :mail as a canonica type,
(define-canonical type :mail "MAIL" (:vrms "MBX")). Thisisan extension to the X3J13

specification.

IThis is not strictly true of the LOGICAL-PATHNAMES System. Since LOGICAL-PATHNAMES parses physical
pathnames into a canonical format and can print pathnames in the formats of several Lisps, it may trandate
Wi | d-inferiors itsdf instead of relying on the filesystem. Thisis an extension to the X 3J13 specification.

LOGICAL-PATHNAMES:. Portable Pathnames 53

(" CODE; DOCUMENTATI ON. *. *" "/ i b/ prog/docunmentatio.*")
(" CODE; *.*, *" “"/1iblprog/")))
<cl > (I p:transl ate-1ogical - pat hnane "prog: code; docunentation.!lisp"
:nanestring)
“/1ibl/prog/docunentatio.l"

5.5. Implementation Notes

The LOGICAL-PATHNAMES system can be divided into two major pieces. Thefirst is parsing and
generating the syntax of various pathname formats, and the second is the trandation algorithm
itself.

The parsing of the various pathname formats is straightforward. All of the associated operations
involve breaking a string into two pieces around a character or string delimiter. The function
par se- generi c- namest r i ng extracts the host from the namestring and uses it to determine
the physical host type. Then do- generi c- pat hnane- par se decides what parsing function to
cal based on the host type. This is where one would add new pathname types to
LOGICAL-PATHNAMES. Most types of physical host have a similar pathname structure and may
be parsed using par se- generi c- pat hnane.

The function physical-nanmestring returns the appropriate surface form of a
physi cal - pat hnane (the underlying structure that al pathnames are parsed into by
LOGICAL-PATHNAMES) corresponding to its host type.

The function transl at e- 1 ogi cal - pat hnane calls the function
resol ve- | ogi cal - pat hnane to transate the logical pathname into a physical pathname.
resol ve- 1 ogi cal - pat hnane calls map- | ogi cal - pat hnane to retrieve and apply a single
tranglation pair to the logical pathname. If the result is a physical pathname it is returned. If the
result is a logical pathname, r esol ve- | ogi cal - pat hnane calls itself recursively. A table of
previously seen logical pathnames, *ci rcul ari ty-check-t abl e*, is mantained to prevent
infinite loops. r esol ve- | ogi cal - pat hnane callscheck- | ogi cal - pat hnane to check and
update this table, signalling an error if alogical pathname is repeated.

The function map- | ogi cal - pat hnane iterates down the list of tranglation pairs for the logical
host, stopping with the first trandlation pair whose from-wildname matches the logical pathname
according to |ogical-pathnane-match-p and returning the result of
transl at e- 1 ogi cal - pat hnanme- aux being called on the logica pathname and trandation
pair. transl ate-|ogical - pat hnane-aux uses the functions map-directories and
map- wi | dcar d- wor d to do the trandation.

map-wi | dcar d-wor d cals map-strings to transform individua strings. map- stri ngs
trandates a string from the source wild-string to the target wild-string. It assumes that wildcards
("*") in the source wild-string will correspond to wildcards in the target wild-string, and replaces
wildcards in the target pattern with the string’s contents as specified by the corresponding

54 Portable Utilities for Common Lisp

wildcard in the source wild-string. Literal strings are copied as is from source wild-string to
target wild-string. When not enough matching wildcards are available due to too few asterisksin
the source wild-string, the null string is used as the matching value for any wildcards remaining
in the target wild-string. When the source wild-string has too many wildcards, the first extra
wildcard and everything following it are ignored. The operation of map-di rectori es with
respecttothe: wi I d and: wi | d-i nferi ors wildcards is analogous.

The function append- | ogi cal - di rect ori es isprovided to tack a subdirectory onto alogical
pathname. It is used by the DEFSY STEM program.

SOURCE-COMPARE: A " diff" for Lisp 55

6. SOURCE-COMPARE: A "diff" for Lisp

The SOURCE-COMPARE system is a portable tool for comparing Lisp source files. While it may
be used to find the differences between arbitrary text files, it has severa features customized for
Lisp, such as the ahility to ignore Lisp comments. It uses a greedy algorithm for longest common
substring that may not necessarily find the longest common substring, but which runs in average
case linear time and works well in practice.

6.1. Overview

SOURCE-COMPARE is a portable Common Lisp tool for comparing Lisp source files, similar in
functionality to the UNIX program "diff". Like diff it can ignore case, whitespace, and blank
lines. In addition, it can also correctly ignore certain classes of Lisp comments. It uses a different
algorithm from diff, and runs in average-case O (m+n) time, where m and n are the lengths in
lines of the files being compared.

The algorithm is a greedy variation on the usual dynamic programming implementation of the
algorithm for finding the longest common substring of two strings. When comparing two files,
SOURCE-COMPARE tries to maintain the two files in sync, and when a difference is encountered,
uses the closest next match, where distance is minimized according to some metric. Since thisis
a greedy agorithm, it is possible that it will not find the optimum global match sequence.
However, the suboptimal case hardly ever occurs in practice, and when it does occur, it doesn’'t
make much of a difference for comparing different versions of sourcefiles.

The metrics should be chosen so that minimizing distance is equivalent to minimizing the edits
necessary to bring the two files into agreement. Two such metrics include

* X +Y, thetotal length of additions and deletions from both files

* max(X,y), the length of the largest addition or deletion from either file
where x is aline number from the first file and y is a line number from the second file. Both of
these metrics are appropriate to the problem, since the former tries to minimize the total changes
and the latter gives a preference to small changes.

While neither metric actually builds the dynamic programming table, they can be considered as
exploring the table in successive rectilinear and diagonal layers, respectively. The metrics are
illustrated in Figure 6-1. Both metrics have been implemented.

If the two files have no lines in common, we get a worst-case running time of O (mn), wherem is
the length in lines of the first file and n the length in lines of the second file. In practice,
however, the algorithm seems to aways run in linear time.18 We show in Section 6.4 that the
algorithm has an average case running time of O(m+n). The diagona metric seems to run

18presumably because the files one compares tend to have many lines in common.

56 Portable Utilities for Common Lisp

Ty

o
o

.
-

!

\

—_P
.
.
—
I

il

m ni m zing max(x,y) mnimzing x +vy

Figure 6-1: Two Greedy Metrics

dlightly faster and use less space than the rectilinear metric, so it has been made the default.

6.2. Using SOURCE-COMPARE

This section describes all of the basic SOURCE-COMPARE commands and the variables which
control their behavior.

6.2.1. Comparing Files

sour ce- conpar e is the main function for comparing files. The variable *gr eedy- net ri c*
contains the name of the greedy metric used to cal cul ate the closest next match.

sour ce- conpar e (filename-1 filename-2 & key [Function]
(output-stream * standard-output*)
(ignore-case *ignore-case*)
(ignore-whitespace *ignore-whitespace*)
(ignore-comments *ignore-comments*)
(ignore-blank-lines *ignore-blank-lines*)
(print-context * print-context*)
(print-fancy-header * print-fancy-header*))

Compares the contents of the two files, outputting a report of what lines must be
changed to bring the files into agreement. The report is similar to that generated by
‘diff’: Lines of the forms

nl a n3,n4
nl,n2 d n3
nl,n2 ¢ n3,n4

(where aisfor add, disfor delete, and c isfor change) are followed by the lines
affected in the first (left) file flagged by '<’ then all the lines affected in the second
(right) file flagged by '>’. If print-context ist , will print out some additional
contextual information, such as additional lines before and after the affected text and
the definition most likely to be affected by the changes. If print-fancy-header ist ,
printsthefil e-aut hor andfil e-wite-dat e intheheader. The report is output
to output-stream. Returnst if the fileswere "identical”, ni | otherwise. If ignore-case

SOURCE-COMPARE: A " diff" for Lisp 57

ISt , uses acase insensitive comparison. If ignore-whitespaceist , ignores spaces and
tabs that occur at the beginning of the line. If ignore-commentsist , triesto ignore
comments at the end of theline. If *dont - i gnor e- ngj or - conment s* ist, will
also ignore major comments (comments with a semicolon as the first character of the
line). If ignore-blank-linesist , will ignore blank linesin both files, including lines
that are effectively blank because of ignored comments.

gr eedy- net ri c (quote find-next-diagonal-match) [Variable]

Variable containing the name of the greedy matching function used to minimize
distance to the next match:

e find-next-rectilinear-natch minimizesmax(x,y)
e f i nd- next - di agonal - mat ch minimizes x+y
where x is aline number from the first file and y is aline number from the second file.

fi nd- next - di agonal - mat ch (file-1 start-1 file-2 start-2) [Function]
First difference detected, look ahead for a match [x+y version].
find-next-rectilinear-match (file-l start-1 file-2 start-2) [Function]

First difference detected, look ahead for a match [max(x,y) version].

6.2.2. SOURCE-COMPARE Variables

The following four variables control the appearance of the report on the differences between the
files.

*print-context*t [Variable]
If t, we print the context marking lines that occur before the difference.
print-fancy-header () [Variable]
If t, prints afancy header instead of the simple one.
context-1ines-before-difference 0 [Variable]
Number of lines of context to print before a difference.
context-lines-after-difference 1 [Variable]

Number of lines of context to print after a difference.

The next variable controls whether small changes close together are merged into a larger group.
mi ni mum mat ch- | engt h 2 [Variable]

The minimum number of lines that must match for it to be considered a match. This
has the effect of collecting lots of adjacent small differences together into one larger
difference.

The next five variables control sensitivity to whitespace, case, blank lines, and comments.

i gnor e- whi t espace t [Variable]

If t , will ignore spaces and tabs that occur at the beginning of the line before other text
appears and at the end of the line after the last text has appeared.

58 Portable Utilities for Common Lisp

i gnor e-case t [Variable]
If t , uses a case insensitive comparison. Otherwise uses a case sensitive comparison.
i gnor e- bl ank-1ines t [Variable]

If t , will ignore blank lines when doing the comparison.
i gnor e- conment s t [Variable]

If t , will try to ignore comments of the semicolon variety when comparing lines. Tries
to be rather intelligent about the context to avoid ignoring something that really isn't a
comment. For example, semicolons appearing within strings, even multi-line strings,
are not considered comment characters. Uses the following heuristics to decide if a
semicolon is acomment character or not:

« Slashification (\) works inside strings ("foo\"bar") and symbol names
([foo\|bar]), but not balanced comments (#/foobar\[#).

» Balanced comments do not work inside strings ("#[") or symbol names.

« Strings do not work inside balanced comments (#|" [#)

* Regular semicolon comments do not work inside strings, symbol names, or

balanced comments (#/foo;bar|#).

All thisis necessary for it to correctly identify when a semicolon indicates the
beginning of a comment. Conceivably we should consider a semicolon as a comment
when it isinside a balanced comment which isn’'t terminated from the semicolon to the
end of the line. However, besides being complicated and time-consuming to
implement, the Lisp interpreter doesn’t treat it thisway, and we like to err on the side
of caution. Anyway, changes in the comments within commented out regions of code
isworth knowing about.
dont - i gnor e- maj or - conment s () [Variable]

If t , ignoring comments does not ignore comments with a semicolon as the first
character of the line.

6.3. Example of Using SOURCE-COMPARE

SOURCE-COMPARE is loaded into the "SOURCE-COMPARE" package, so we prefix the
functions and variables with a"SOURCE-COMPARE:" or the nickname"SC:".

The following example shows what the output of the source comparison program looks like.

<cl > (SC:.source-conpare "~/old/glinda.lisp" "glinda.lisp" :ignore-conments t)

Sour ce conpare of
~/old/glinda.lisp
(witten by nkant, FRI 20-JUL-90 11:59: 05)
w th
glinda.lisp
(witten by nkant, THU 15- NOV-90 15: 53: 44)

46¢c46
**** File ~/old/glinda.lisp, After "(defvar *glinda-version* nil)"
< (setq *glinda-version* "6/19/90")

SOURCE-COMPARE: A " diff" for Lisp 59

< (format t "~%Jsing Ainda Generation, Generator Version ~A. " *glinda-version*)
**** File glinda.lisp, After "(defvar *glinda-version* nil)"

> (setq *glinda-version* "11/13/90")

> (format t "~%Jsing Ainda Generation, Generator Version ~A. " *glinda-version*)

550¢550

**** File ~/old/glinda.lisp, After "(defun constraint-match (cval ue gval ue)"
< ((or (synmbol p cvalue) (nunberp cval ue))

< (ontol ogi cal -supertypep cval ue gval ue))

**** File glinda.lisp, After "(defun constraint-match (cval ue gval ue)"
> ((or (symbolp cvalue) (stringp cval ue)(nunberp cval ue))
> (ontol ogi cal -supertypep cval ue gval ue))

562a563, 567

**** File ~/old/glinda.lisp, After "(defun constraint-match (cval ue gval ue)"
< (defun find-organi zation (head type features &optional group)

**** File glinda.lisp, After "(defun constraint-match (cval ue gval ue)"

> (defvar *which-rul e-to-choose* :random; &newll/ 13/90

> "If find-rule returns nore than one rule, specifies which rule we use
> cfirst -- just take the first rule.

> :random -- pick a rule at random")

>

> (defun find-organi zation (head type features &optional group) ; &mwdl1l1l/13/90

565c¢570, 580
**** File ~/old/glinda.lisp, After "(defun find-organization (head type features &op
< (car (find-rule (lexical-organization category type) features group))))
<
**** File glinda.lisp, After "(defun find-organization (head type features &optiona
(let ((rules (find-rule (Iexical-organization category type)
features group)))

(case *which-rul e-to-choose*

(:first (car rules))

(:random (choose-randomrules))))))

\%

(defun choose-random (list) ; &newll/ 13/90
"Chooses a random el enent of the list."
(if (null (cdr list))

(car list)
(nth (random (length list)) list)))

VVVVVYVYVVYVYVYV

Done.

6.4. Proof of Average Case Linear Running Time

We prove that SOURCE-COMPARE runs in average case linear time.

Let a and b; be the ith distances between matches in files A and B, respectively. Let k, 1<k<n,
be the number of matches. Then zik:lai =mand Zik:lbi =n, where misthe length in lines of file
A and n is the corresponding length for file B. The running time of the algorithm is proportional

to Z:(zlaibi'

Since a; and b, are positive integers, it follows that

60 Portable Utilities for Common Lisp

k k k
Zaibi < Zaizlbi =mn
i= i= i=
and hence the worst-case running time is O (mn). But the worst-case running time is atypical of
the average-case behavior. As we shall show, the average-case running timeis O (m+n).

Combining the Cauchy-Schwartz inequality1®
Y absvy (@)?Vy (b)?
[1 [
with the arithmetic-mean geometric-mean inequality

Vxy <22 x+y

yields
Z(aq)z *y ()2
Z ab, < 5

So it suffices to consider the average value of Z!‘zl(ri)2 over all possible ordered sequences r; of
positive integers for k=1 to n such that Z -,I;=n. Such a sequence is called a composition of n
into k distinct parts.20

To compute this average we sum the squares of the parts of the compositions of n, and divide by
the total number of such compositions. We shall show that the former is equal to (3n-4)2"1 + 2
and the latter to 271, and hence that the average is equal to 3n—-4+2-(N"2),

The number of occurrences of part i in the k-compositions of n is the same as the number of
(k—1)-compositions of n—i multiplied by k, the number of positions in which i could be inserted
to form a k-composition of n. To see that the former is (” - 1) consider n—i dots separated by

(n—i1)-1 spaces, and choose (k-1)-1 of them to form k-1 integers. This gives us k(n i1
occurrences of i in the k-compositions of n.

Thusf(nk=51, ZJ LMY Substituting j(M 1Y) = (n-i-1)("15?) +2(" 1) yields

190ne sentence proof: Given vectors a and b, ab =|[a|| |p||cos® < |k|||p|l, with equality when a and b are
paralel (cosb=1).

20The word distinct here signifies that permutations of a sequence are not considered identical -- the cells are
distinct. A composition of n is an ordered sequence of positive integers whose sum is equal to n. The elements of
the sequence are called parts. A composition with exactly k parts is called a k-composition. For example, there are
sixteen compositions of 5;

(5

(1,4) (4.1) (32) (2.3)

(1,1,3) (1,3.1) (3.11) (1,22 (21.2) (2.2,1)
(1,1,12) (1,1,2,1) (1,2,1,1) (2,1,1,1)
(1,1,1,1,1)

SOURCE-COMPARE: A " diff" for Lisp 61
n-2 . . n ‘)
f(NK)=S iX(n-i-1) 202+ § jkon-i
2 2

For k=2, substituting using j=n+1-i and using the identities

n
> 2i=2n1-2
I? | .
i2'=(n-1)2m1+2
2
n
Z i22 = (n?-2n+3) 2"1-6
1=

n
Z 122 = (N8-3n%+9n-13) 2"1+ 26
yields (3n—4)21 + 2 as desired.

Note that since there are (j7}) k-compositions of n, the total number of compositions is
n -1\ — 9n—
2 (i) =27

Thus the average value of the sum of the squares of the parts of the compositions of nisequal to
3n-4+2~(""2) Thus

(@) +y (B)?
zanbis'z 2'2 — =30 gy

on average, and hence the average case running time is O (m+n).

6.5. Implementation Notes

SOURCE-COMPARE has four major pieces: line comparison, the outer iteration loop that keeps the
filesin sync, the inner iteration loops that find the next match, and the report generator.

6.5.0.1. Line Comparison

The function conpar e- | i nes is used to compare a line from each file. It uses| i ne-start to
find the positions in each line where it should begin comparing them, and | i ne- end to find the
positions where it should stop comparing them. line-start and |ine-end use
first-non-whitespace-char to find the position in the line where the whitespace ends and
begins, respectively. | i ne- end calls get - conment - posi ti on to find the comment position
for the current line, if any, given the cached position information for the previous line.
get - corment - posi ti on callsfi nd- cooment - posi ti on to actually determine where in the
line the comment begins, if at all.

62 Portable Utilities for Common Lisp

conpar e- | i nes (file-1 line-no-1 file-2 line-no-2) [Function]

Intelligently compare two lines. If *i gnor e- case* ist, uses case-insensitive
comparison. If *i gnor e- whi t espace* ist, ignores spaces and tabs at the beginning
of theline. If *i gnor e- comrent s* ist , triesto ignore comments at the end of the
line.

l'i ne-end (linefileline-no &optional (start 0) end) [Function]

Returns the position of where in line to end the comparison. If the comparison should
end at the end of theline, returnsni | . start, if supplied, iswhere to start looking for
the end.

l'i ne-start (line&optiona (start 0)) [Function]
Returns the position of where in line to start the comparison.

first-non-whitespace-char (line&key from-end (start 0) end) [Function]

Finds the position of the first character of line which is neither a space or atab.
Returnsni | if no character found.

get - cooment - posi ti on (linefileline-no &optional (start 0) end) [Function]
Returns the position of the beginning of the semicolon variety comment on thisline.

The function f i nd- conment - posi ti on has been carefully constructed to return the correct
position of the comment character, despite the many interactions of dlashification, delimited
strings, delimited symbol names, balanced comments, and regular comments. For example, a
semicolon appearing inside a documentation string should not be counted as the beginning of a
comment. As another example, a slashified semicolon should not count as a comment unless the
dashisitself dashified.

fi nd- comment - posi ti on (line &optiona (start 0) end & key [Function]
inside-string (splat-bar-count 0))

Triesto find the position of the beginning of the comment at the end of line, if thereis
one. start and end delimit the search. end defaults to the end of the line. If
inside-string is non-nil, it is assumed that we're inside a string before we began (if so,
inside-string is set to the character which will terminate the string (#\ " or #\ |).
splat-bar-count is the number of unbalanced begin balanced comments (#|) that have
been seen so far.

6.5.0.2. Outer Iteration Loop

The function sour ce- conpar e- i nt er nal maintains indices into both files, always positioned
so that they correspond to a match. If the next pair of lines are a mismatch, it calls the current
metric (* gr eedy- net ri c*) to find the indices of the lines where the files match up again. It
then generates a report for the mismatch using print-di ff er ences, and continues from
where they match until it reaches the end of the files.

SOURCE-COMPARE: A " diff" for Lisp 63

6.5.0.3. Finding the Next Match

The function fi nd- next - di agonal - mat ch explores successive diagonals of the dynamic
programming table in order of increasing sum x+y. It callsf i nd- di agonal - mat ch to explore
the diagonal from top to bottom, possibly truncating it at the ends of the table.

The function fi nd- next -recti | i near - mat ch explores successive rectangular layers of the
dynamic programming table, calling f i nd- | i near - mat ch alternately to explore horizontal and
vertical layers.

Both find-next-diagonal-match and find-next-rectilinear-match call
f ound- mat ch to verify that a match has been found by checking that the next few lines (up to
m ni mum mat ch- | engt h) areidentical. If f ound- mat ch returns ni | , this has the effect of
clumping together differences separated only by a few matching lines. If a definition changed
between the files, it is sometimes preferable to be given the entire definition as a change than a
lot of small slices of the definition.

6.5.0.4. Report Generator

The function pri nt - di f f er ences prints the differences in the two files. It prints a one line
summary of the change in aformat similar to diff, giving the ranges of lines from each file, and
using a single letter (a, d, or) to indicate additions, deletions and changes, respectively. It then
prints out the appropriate section of each file, possibly with a few lines before and after to give
context. Also for context, it hunts backwards in the file until it finds the nearest line that begins a
definition (left parenthesis on column zero) and prints that line.

64

Portable Utilities for Common Lisp

USER-MANUAL: Extracting Program Documentation 65

7. USER-MANUAL : Extracting Program Documentation

The USER-MANUAL program is a portable tool for extracting documentation from Lisp source
code. It helps create user guides and program documentation.21

7.1. Overview

USER-MANUAL reads in the source code from a Lisp program, extracts the function name,
argument list, and documentation string, and formats it either for use as a Lisp comment or for
use in a Scribe document.

USER-MANUAL can format documentation for several types of definition forms, including
functions, macros, variable definitions, defstructs, class and method definitions, and defsetf
forms. It is easy to add documentation handlers for new types of definition forms.

7.2. Using USER-MANUAL

The function cr eat e- user - manual is the main routine for generating the documentation for
the definitions of a program.

cr eat e- user - manual (filename & key (output-format (quote text)) [Function]
(output-stream * standard-output*))

Automatically creates a user manual for the functionsin afile by collecting the
documentation strings and argument lists of the functions and formatting the output
nicely. Returns alist of the definition types of the formsit couldn’t handle.
output-format may be either ’ t ext or’ scri be.

7.3. An Example of Using USER-MANUAL
The definition entry in Section 7.2 was generated by evaluating

(create-user-nmanual "user-nmanual .lisp" :output-format ’'scribe)
The following isthe same entry, but in’ t ext format:

;7 CREATE- USER- MANUAL (fil enane &key (output-format (quote text)) [FUNCTI ON]
; (out put - stream *st andar d- out put *))
Automatically creates a user manual for the functions in a file by
collecting the docunentation strings and argunent |lists of the
functions and formatting the output nicely. Returns a list of the
definition types of the forns it couldn’t handl e. Qutput-format
may be either ' TEXT or ’ SCRI BE.

21The documentation in this user guide was created using the USER-MANUAL program.

66 Portable Utilities for Common Lisp

7.4. Extending USER-MANUAL

The macro define-doc-handl er is used to define a new documentation handler. For
example, the documentation handler for def var was defined as follows:

(define-doc- handl er defvar (form
"vari abl e"
(val ues (second form
(third fornm
(fourth form))
Definitions with more complex syntax, such as def net hod have correspondingly more complex

documentation handlers.
def i ne- doc- handl er (definer arglist description & body body) [Macro]

Defines a new documentation handler. definer is the car of the definition form handled
(e.g., defun), description is a one-word string equivalent of definer (e.g., "function"),
and arglist and body together define afunction that takes the form as input and value-
returns the name, argument-list, documentation string, and alist of any qualifiers of the
form.

7.5. Implementation Notes

The only complicated aspect of USER-MANUAL is the formatting of the argument lists. If Waters
XP Lisp pretty printer [9] [10] is present in the Lisp environment USER-MANUAL Uses it to
format the argument lists. If not, USER-MANUAL uses several heuristics for formating the
argument lists nicely.

The function split-string is used to break up both long argument lists and lines of
documentation that are too wide. It cals the functions | anbda- | i st - keywor d- posi ti on,
split-point, bal anced- parent hesi s-position, and parse-with-delimter. The
basic idea is to split the argument list so that it fits on the line, and walk backwards to the first
balanced parenthesis on the line, unless it’ s the first character on the line. Then it checks whether
the previous "word" is a lambda-list keyword, and if so splits the argument list just before the
keyword, otherwise at the balanced parenthesis position.
split-string (string width &optional arglistp filled [Function]
(trim-whitespace t))

Splitsastring into alist of strings, each of which is shorter than the specified width.

Triesto be intelligent about where to split the string if it isan argument list. If filled is

t , triesto fill out the strings as much as possible. This function is used to break up long

argument lists nicely, and to break up wide lines of documentation nicely.
split-poi nt (string max-length &optional arglistp filled) [Function]

Finds an appropriate point to break the string at given atarget length. If arglistpist ,
triesto find an intelligent position to break the string. If filled ist , triesto fill out the
string as much as possible.

USER-MANUAL: Extracting Program Documentation 67

| anbda- | i st - keywor d- posi ti on (string &optional end trailer-only) [Function]
If the previous symbol is alambda-list keyword, returns its position. Otherwise returns
end.

bal anced- par ent hesi s- posi ti on (string &optional end) [Function]

Finds the position of the left parenthesis which is closest to end but |eaves the prefix of
the string with balanced parentheses or at most one unbalanced |eft parenthesis.

parse-wi t h-del i miter (line&optiona (delim #Anewline)) [Function]
Breakslineinto alist of strings, using delim as a breaking point.

68

Portable Utilities for Common Lisp

Test Source Filefor XREF 69

Appendix |
Test Source Filefor XREF

The following is a short nonsense program used to test XREF and produce the output in Section
2.4. 1t may befound inthefilexref-test. i sp.

(defun top-1evel ()
"Top level function with null |anmbda list."
(let* ((input (read))
(key (car input)))
(decl are (special key))
(case key
(quit
(return (values (frob (rest input)) "quit)))
(otherw se
(cond ((nmenber key ' (foo bar baz))
(barf key (rest input)))
(t
(frowz (rest input) :key key)))))))

(defun frob (itens)
"Here we test mapcar."
(mapcar # frob-itemitens))

(defun frob-item (itemn
"Here we test apply."”
(apply # append-frobs item)

(defun barf (key &optional itemns)
"Optional args test."
(cons key (frowz itens)))

(defun frowz (itenms &key key)
"Keyword args test."
(dolist (itemitemns)
(let ((frowz
(if (eq key "quit)
(intern
(format nil "FOO-A"
(round (+ (length (process-keys itemns))
10))) 'keyword)
(snarf-itemitem)))
(when (string-equal frowz (process-key key))
(setf (node-position key) 12)
(return frowz)))))

(defun process-key (key)
(funcall # synbol - nane- key key))

70

Portable Utilities for Common Lisp

Extensionsto Common Lisp 71

Appendix ||
Extensionsto Common Lisp

In the course of writing these utilities, often there were implementation-dependent functions
which represent functionality that is missing from Common Lisp. This appendix lists some of
those functions.

argli st (symbol) [Function]
Returns the argument list of symbol.

append- di r ect or i es (absolute-pathname relative-pathname) [Function]

Tacks a subdirectory onto a directory. Returns the pathname absol ute-pathname with
the components of the directory of relative-pathname appended onto the end of its
directory.

space () [Function]

Value returns three numbers relating to memory usage. Thefirst isthe number of bytes
of dynamic storage currently allocated. The second is the amount of space remaining.
Thethird is the total number of bytes consed since time zero (alternately, since the first
time space was caled, with the first time returning zero).

The definition of r oomis inadequate because it isimplementation dependent and lacks
aconvenient interface for programs. Having to call par se- i nt eger on the output of
(room ni |') isunacceptable.

The macro def set f currently restricts the setf method to a single store variable. If we modify
def setf to allow multiple store variables, with assignment via multiple values (e.g., (set f
(frob x) (values 1 2))),thenget-setf-nmethod-nultiple-val ues can be removed
from the language.

Some Lisps buffer the input lines at read-eval-print loop prompt. This interferes with the desired
operation of | i st en and r ead- char - no- hang, since they should not have to wait until the
user hits a carriage return and linefeed to get their input. Perhaps Common Lisp should include a
wi t h- unbuf f er ed- r eadi ng macro. This macro could put the tty in RAW or CBREAK mode
to allow unbuffered reading, and back to COOKED mode afterwards.

Common Lisp currently avoids discussing memory management and garbage collection. A set of
naming conventions for the basic gc functions for Lisps that involve garbage collection would be
helpful.

Common Lisp should specify more of the keywords that should appear in the *features* list. For
example, each Lisp implementation should have symbols that distinguish it from other Lisps and
distinguish major versions of the implementation. Major subsystems such as CLOS, LOOP,
SERIES, etc., should have associated keywords.

Miscellaneous minor functions:
 firstn returnsthelist containing the first n elements of its argument.

72 Portable Utilities for Common Lisp

subst:sublis::substitute:? Add a definition par al | el - substi t ut e for performing
many substitutions on a sequencein parallel.

Equivalentsof | ast and but | ast for sequences.

useri d and user nane return the user’ sid and name, if available.

copy- fi | e to make acopy of afile.

e creat e-direct ory to create anew directory.

It is unfortunate that a portable DEFSYSTEM facility must be file-based. Nothing in the definition
of the Lisp language requires that definitions be stored in files, but there seems to be an implicit
assumption that thisis so. In Common Lisp one may either compile an entire file or an individual
definition, but there is no mechanism for compiling a single definition and saving its compiled
code in afile. Thisimposes artificial constraints on a system like DEFSYSTEM. If instead Lisp
definitions and compiled code were stored in a database, one could still edit the definitions using
atext editor, but the compiler would be able to ensure that the compiled code in the database is
up to date on a package by package (or even defun by defun) basis.

Extensionsto Common Lisp

References

[1] Feldman, S. I.
Make - A Program for Maintaining Computer Programs.
Software - Practice and Experience 9(3):255-265, March, 1979.

[2] Masinter, Larry M.
Global Program Analysisin an Interactive Environment.
PhD thesis, Stanford University, 1980.

[3] Moon, David, Stallman, Richard, and Weinreb, Daniel.
Lisp Machine Manual
6th edition, MIT Al Laboratory, Cambridge, Massachusetts, June 1984.

[4] Program Development Utilities, Volume 4
Symbolics, Cambridge, MA, August 1986.

[5] Robbins, Richard E.
BUILD: atool for maintaining consistency in modular systems.
Al Memo 874, MIT Al Laboratory, Cambridge, Massachusetts, 1985.

[6] Steele, Guy L. Jr.
Common LISP: The Language.
Digital Press, 30 North Avenue, Burlington, MA 01803, 1984.

[7] Steele, Guy L. Jr.
Common LISP: The Language; 2nd Edition.
Digital Press, 30 North Avenue, Burlington, MA 01803, 1990.

[8] User’s Guide to Symbolics Computers, Volume 1
Symbolics, Cambridge, MA, July 1986.

[9] Waters, Richard C.
PP: A Lisp Pretty Printing System.
Al Memo 816, MIT Al Laboratory, Cambridge, Massachusetts, 1984.

[10] Waters, Richard C.
XP: A Common Lisp Pretty Printing System.
Al Memo 1102, MIT Al Laboratory, Cambridge, Massachusetts, March, 1989.

74

Portable Utilities for Common Lisp

Table of Contents

Table of Contents

1. Introduction

1.1, Why POrtable ULHTITIES? ..ottt e
1.2. DESIGN PhIlOSOPRNY ...ttt ettt bbbt b et b et b e et e e et b nrene
L.3. OVEINVIBIW ettt bbbt b e e b e e h s e bt s e e bt e R e Rt e E e Rt e b et e b e e e b et b e e e b e e e b e e e e b et e bt r st b nenrne
1.4, ObtaiNiNg the ULHITIESc.oieiieee bbb e
1.5, ACKNOWIEOGIMENTS ...ttt ettt ettt e et bbbt b et b e e b e eb e bt se e bt nrene

2. XREF: Cross Referencer

2.1, OVEINVIBIW ..ottt ettt et st e b et e et b et b et b e ek e s e e b e s e e ke s e e bt e ekt s e e b e et e Rt s b e neebe e e be e ebeneebe e
2.2, L OBAING XREFutiuiiuieterteseesiesteseessesessesseseesessessessessessessessesssssensessessessesesssasessessessessessessensensessensesnsessessenses
2.3, USING XREF ..ueeutitirieitestesteseestesteseeseessessessesessessessessessessessessessensessensessessesesssesessessessessessessensensensensesenenessenses
2.3.1. Creating, Saving and Restoring the Reference Database...........ccccovveveveverescsecce e
2.3.2. Examining SymMbBOol REFEIENCESceviii ittt sre e
2.3.3. Viewing and Graphing the Reference Database.........ccccvevvvvenieniniisesie e
234, XREF VAINTADIES ...ttt bbbttt a e enes
2.4. AN EXAMPIE Of USING XREF ...iiviieieeeeeieesestestesestestesteseesseseessessessssesssssessesssssessessessensensensensessssesssssenses
2.5, EXLENAING XREF ...uvitietiiteieisiesieseeseeteseeseeseesessessessessessessessessessassensessessesesssssessessessessessessensensensensesesensessenses
2.6, IMPIEMENLALION NOLES......ccviieieeeeereere et st se e e e e e sre s e e saeseesbeseesaensenseneeneenensenneerenaes

3. METERING: Code Timing and Consing Profiler

00 I 0 I = T To [V 1 = =TT N OSSR
3.2, USING METERING ...tttiititeteseesteseeee e et euesaesaesbesbesaesbesbeseessansaee e eseaseeaeaaeabesbesaeab e b seesbenbeneeneeneeneeneenensesnens
321, SUQQESIEA USAGE ... ettt ettt ettt ettt h bbbt b b e bt s b e bese e se et et e e et ne e e e ne b nas
3.2.2. METERING PIiMITIVES ..ottt
3.3. An Example of METERING OULPULc.coiiiiiiiriistesie ettt st st sne e
A © L= To L= NN (o =< OO UPRPRTPR
341, ClOCK RESOIULION ...ttt
3.4.2. Calculating Monitoring OVErNEAMcooiiieieeeeeeeeeee et
3.5, IMPIEMENTALION NOLES..... .ot ettt a e b e bt b e b e et e e e e e e e e e e e eneebenneees

4. DEFSYSTEM: A "make" for Lisp

A1, INSEAIING DEFSYSTEM ..utiiiiiiiuirtesisteses ettt s sttt se st bbb et bbb b b et s b et b et b e s e b et b e st
T O Y1 VT Y OO PTSTSRTRRR
4.3, USING DEFSYSTEM ..ouictiiitirieuesiesestesessesessesesessesessesesaesessesessenessensssessssessesessesessesessenessensssensssensesessesessesensens
4.3 1. DEfINING & SYSIEM ...ttt bbbt bne
4.3.1.1. COMPONENT TYPES ..ottt ettt r b sr e r bt sr e s s e e ene e e eneenenns

4.3.1.2. COMPONENT NAIMES.......ooiiiiiiiitiirisesie ettt r e e sr e e sr e s s se e ese e e eneerenns

4.3.1.3. Component Pathnames and File TYPESccociviiriineinerre e

4.3.1.4. Segregating Binariesfor Different LispS.....cccvceeveinennennennenesesese e

4.3.1.5. INClUding FOr@ign SYSIEMS......oiiiriciereeie ettt

4.3.1.6. Component Packages, Initializations and Finalizations...........c.ccccevvvereneiecerceneeenn,

4.3.1.7. Component DEPENUENCIESccciriiriei ettt st

4.3.1.8. Load-only and Compile-only COMPONENES........cccoeireririenerienerenesesese e

4.3.1.9. Component DEfiNITIONS. ..ot

4.3.2. DESCITDING @ SYSLEM ...ttt bbbttt
4.3.3. REMOVING @ SYSLEM ..ottt bbbttt
4.3.4. Loading and Compiling @ SYSEEMc.coeiriiriiiriereeseee e s
4.3.5. Other OperationS 0N SYSLEMSciiiririeirieerieereer et b b
4.3.6. ChangeSTO REQUITE......ceiiiiieiieiiiete ettt bbbttt b
4.3.7. DEFSYSTEM VaArTADIEScoiiiiiiic e e

4.4. AN EXample Of USING DEFSYSTEMccciiiieuirieiirieierieiesieesieesiees et e st esse s s ssesssssssesessens
A5, IMPIEMENTALION NOLES... ...ttt bbbt b et a bbb
45.1. Structural vs. Procedural System Construction TOOIS.........cccuveireierenenennenseeesee e
4.5.2. Retrieving System DefiNitioNS.... ... e
4.5.3. APPENAING DIl ECLOMTES......iiieieiiiieieeese bbbt

©QOoowoo~N N JOwNR Rk -

4.5.4. Defining @ SYySteM.....ccooiiiiiee e
4.5.5. Operating 0n a SYSteM.......ccooeveririeneeeeereeesese e
4.5.6. Queryingthe User with TIMEOULSccecerverienineninienine
V2SN AR D T= o10To o1 o o [T

5. LOGICAL-PATHNAMES: Portable Pathnames

L T O 1= Y S
5.1.1. Logical Pathname SyntaX..........cccoevereeneienenesenesenesienenns
5.1.2. Incompatibilitieswith the X3J13 Specification.................

5.2. Installing LOGICAL-PATHNAMES......cocuriririririeenieesieesie st

5.3. USING LOGICAL-PATHNAMESccoiuiiriiiriiiriesieesie st
5.3.1. Physical HOSt TYPES....cocoiiiriiriireie e
5.3.2. Logical Pathname Trandations........c.ccccoeevevnennennenenn
5.3.3. Loading Logical Pathname Trangdations..........c.cc.cceevruenne.
5.3.4. Additional Transformations........cccccceeereeneiniennennenens

5.3.4.1. Trandation RUIES.........ccocecviininnensenee e

5.3.4.2. Canonical TYPES.....ccveereiereieriereserese e

5.3.5. Using Logical Pathnames...........cccveveiineineienenenennenene
5.3.6. LOGICAL-PATHNAMES Variablescccccovvrevninnennen
5.4. Examples of USiNg LOGICAL-PATHNAMEScccoeereereneriererienenns
5.5. Implementation NOES..........ccveirirrirrie e

6. SOURCE-COMPARE: A " diff" for Lisp

B.1. OVEIVIBW ..ouviiieiieeeesiecsteeste ettt naenas
6.2. USING SOURCE-COMPAREcceititestesteseeseesseseeseesessessessessessessessesseses
6.2.1. Comparing FileS.......cccoviiivinieie e
6.2.2. SOURCE-COMPARE Variables.......ccccoovvevineireinenseneseens

6.3. Example of USINg SOURCE-COMPAREcccevueeeeseenesresesnessensenns
6.4. Proof of Average CaseLinear Running Time.......ccccocveevvevennnn
6.5. Implementation NOES..........cccceveeeiieveseeee e e
6.5.0.1. Line ComMpPariSon........ccccevueveereeveeieeenesesesreseseesrenes

6.5.0.2. Outer [teration LOOPcccevveeeveeieeeeenese e e see e

6.5.0.3. Findingthe Next Match........c.ccccoevrinieniecnninieeenn,

6.5.0.4. RePOrt GeNneratorcccocceevveiviennieisnieeseessiesseesnee e

7. USER-MANUAL : Extracting Program Documentation

A T O 1Y T T
7.2, USINQ USER-MANUAL ...ctimitiietiiettseete st se s
7.3. An Example of USING USER-MANUALc..cerurerureriienieeeieseeneneenes
7.4, EXtENdiNG USER-MANUALocceuirietirietirietereeieseee s
7.5. Implementation NOLES.........ccccireireirieeeree s

Appendix |. Test Source Filefor XREF
Appendix I1. Extensionsto Common Lisp

Portable Utilities for Common Lisp

List of Figures

List of Figures

Figure2-1: Sample PostScript Call Graph
Figure6-1. Two Greedy Metrics

13
56

