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Abstract 
This paper describes a generic blackboard development 

system (GBB) that unifies many characteristics of the 
blackboard systems constructed to date. The goal of GBB 
is to provide flexibility, ease of implementation, and efficient 
execution of the resulting application system. Efficient 
insertion/retrieval of blackboard objects is achieved using 
a language for specifying the detailed structure of the 
blackboard as well as how that structure is to be 
implemented for a specific application. These specifications 
are used to generate a blackboard database kernel tailored 
to the application. GBB consists of two distinct 
subsystems: a blackboard database development subsystem 
and a control shell. This paper focuses on the database 
support and pattern matching capabilities of GBB, and 
presents the concepts and functionality used in providing 
an efficient blackboard database development subsystem. 

I Introduction 

Historically, blackboard-based AI systems have been imple- 
mented from scratch, often by layering a blackboard archi- 
tecture on top of other support systems. This has fostered 
a notion that blackboard-based architectures are difficult 
to build and slow in execution. Despite this notion, AI sys- 
tem implementers are increasingly considering blackboard 
architectures for their applications. Unlike rule-based and 
frame-based AI architectures where a variety of commer- 
cial and academic system development shells are now avail- 
able, an application developer considering an blackboard 
approach remains largely unassisted. 

A microcosm of this situation existed at the Univer- 
sity of Massachusetts. Several large blackboard-based AI 
systems had been implemented [1,2], and a number of ad- 
ditional blackboard-based applications were being consid- 
ered. We decided to pool our experience in implementing 
blackboard systems into a common development system. 
We felt that by consolidating our implementation resources 
we could construct a generic system that would be more 
efficient than any of the individual systems, if they all were 
constructed from scratch. The goal for the blackboard de- 
velopment system was to reduce the time required to im- 
plement a specific application and to increase the execution 
efficiency of the resulting implementation. 

This research was sponsored in part by the National Science 
Foundation under CER Grant DCR-8500332, by the National Science 
Foundation under Support and Maintenance Grant DCR-8318776, and 
by the Defense Advanced Research Projects Agency, monitored by the 
Office of Naval Research under Contract NRO49-041. 

This paper describes the resulting generic blackboard 
development system, termed GBB (Generic Blackboard). 
The GBB approach is unique in several aspects: 

1. A strong emphasis was made on efficient insertion 
and retrieval (pattern matching) of blackboard 
objects. GBB was designed to efficiently implement 
large blackboard systems containing thousands of 
blackboard objects. 

2. A non-procedural specification of the blackboard 
and blackboard objects is kept separate from a 
non-procedural specification of the insertion/retrieval 
storage structure (Figure 1). This allows a “black- 
board administrator” to easily redefine the black- 
board database implementation without changing the 
basic blackboard/object specification or any applica- 
tion code. Such flexibility is not only important dur- 
ing the initial development of the application system, 
but also to maintain efficient database operation as 
the scale and characteristics of the application evolve 
during its use. Both specifications are used by the 
GBB database code generator to produce an efficient 
blackboard kernel tailored for the specific application. 

3. We have defined a general composite blackboard 
object for representing objects composed of discrete 
elements (such as a phrase of words or a track of 
vehicle sightings). 

4. We have defined a pattern language for retrieving 
simple and composite objects from the blackboard. 
The application programmer has the ability to insert 
additional procedural filtering functions into the basic 
retrieval process. This can be significantly more 
efficient than applying the filters to the results of the 
retrieval. 

5. ff clean separation was made between the database 
support subsystem of GBB and the control level. 

r 

Non-Procedural 
GBB 

Application-Specific 
Blackboard 
Unit/Space - Database 

Blackboard 
Database 

Specifications Code Generator Kernel 

Application 
Implementer 

I 1  

Figure 1: The GBB Database Subsystem 
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This allows different control shells to be implemented 
using the common database support subsystem. (We 
feel that it is premature to force a particular control 
architecture on all blackboard applications.) The 
interface between the two subsystems is a set of 
blackboard events, signals indicating the creation, 
modification, or deletion of blackboard objects. We 
are implementing several control shells as part of 
GBB, however an application implementer is free 
to develop a different control shell using the GBB 
database subsystem. 

The emphasis on database efficiency separates GBB 
from the generic blackboard architectures of Hearsay-III 
[3] and BBl [4]. Although both Hearsay-III and BBl are 
domain independent blackboard architectures, their focus is 
on generalizing control capabilities. The major contribution 
of GBB is not, in any extension of the technology of 
blackboard architectures, but in the unification of existing 
blackboard technologies into a development, system for 
high-performance applications. 

The remainder of the paper describes GBB in more 
detail, focusing on its database support subsystem and 
pattern matching capabilities. The implementation of 
control shells will not be described. GBB is implemented in 
Common Lisp and is now being tested in a Common Lisp 
reimplementation of the Distributed Vehicle Monitoring 
Testbed [I]. 

II Specifying the Blackboard Structure 

An application implementer using the GBB system must 
specify the structure of the blackboard and the objects that 
will reside on it. In GBB, the blackboard is a hierarchical 
structure composed of atomic blackboard pieces called 
spaces.l For example, the blackboard abstraction levels 
(phrase, word, syllable, etc.) of the Hearsay-II speech 
understanding system would be implemented as spaces 
in GBB. In addition to being composed of spaces, a 
blackboard can also be composed of other blackboards 
(themselves eventually composed of spaces). Finally, 
blackboards and spaces can be replicated at blackboard 
initialization time (discussed in Section V). 

Spaces are defined first, using define-spaces: 

define-spaces spaces [documentation] &KEY 
dimensions 

[Macro] 

Spaces is a list of space names. Dimensions is a 
of specifiers defining the dimensionality of spaces. list 

The concept of space dimensionality is crucial to efficient 
insertion/retrieval of blackboard objects, and is best 
introduced by examples from existing systems. 

In addition to having the blackboard subdivided into 
multiple information levels, the levels of the Hearsay- 
II speech understanding system (HS-II) [5] and the 
Distributed Vehicle Monitoring Testbed (DVMT) [I] are 
structured. That is, the blackboard objects are placed 
onto appropriate areas within each level based on their 
attributes. In HS-II, each level has one dimension, time. 

‘In designing GBB, we used names that did not evoke preconceived 
notions from previous blackboard systems. Hence the term “space” 
rather than “level” and the term “unit” rather than “hypothesis” or 
“object”. 

In the DVMT, each level has three dimensions: time and 
x, y position. In both systems, each level in the system 
has the same dimensionality. This may not be the case for 
other application areas, and GBB allows individual spaces 
to have different dimensionality. (Spaces with differing 
dimensionality are declared using multiple calls to define: 
spaces .) 

An important aspect of the level dimensionality in HS- 
II and the DVMT is that each dimension is ordered. This 
means that there is a notion of objects being “nearby” other 
objects. In HS-II this idea of neighborhood allows retrieval 
of words to extend a phrase whose begin time is “close” to 
the phrase’s end time. In the DVMT, a vehicle classification 
is made from a component frequency track by looking on 
the blackboard for other component frequency tracks that 
are positioned close to the original track throughout its 
length. 

In addition to ordered dimensions, GBB supports 
enumerated dimensionality. An enumerated dim&ion 
contains a fixed set of labeled categories. For example, 
in the DVMT, a hypothesis classifying a vehicle could be 
placed on a space containing a “classification” dimension, 
where the dimension’s label set consists of vehicle types. 
GBB allows a space to have both ordered and enumerated 
dimensions. 

The dimensionality of each space is an important part of 
system design. Although GBB provides flexibility in spec- 
ifying space dimensionality, the application implementer 
must determine what is appropriate for the particular appli- 
cation. It should be stressed that specifying the dimension- 
ality of spaces is primarily an issue of representation-not 
of dattibase efficiency. Efficiency decisions will be discussed 
in Section IV. 

Returning to the dimension specification in define- 
space, each dimension is specified as a list where the first, 
element is the name of the dimension and the remainder is 
a list of keyword/value pairs describing the dimension. The 
two defined keywords are :RANGE, corresponding to ordered 
dimensions, and : ENUMERATED, corresponding to dimensions 
of enumerated classes. 

The argument, to :RANGE is a list of (lower-bound upper- 
bound) or : INFINITE, indicating a range of (-co, +oo). The 
argument to :ENUMERATED is the label set for the enumerated 
dimension. For example: 
(define-spaces (vehicle-location vehicle-track) 

:DIMENSIONS 
((time :RANGE (0 30)) 

(x :RANGE (-1000 1000)) 

(Y :RANGE (-1000 1000)) 
(classif ication 

:ENUMERATED (Chevy Porsche toyota 
VW-beetle unknown)))) 

defines two spaces with identical dimensionality. It is an 
error to attempt placement of a blackboard object outside 
the range of an ordered dimension or outside the label set 
of an enumerated dimension. If dimensions is omitted 
or nil, the space has no dimensionality. Such spaces are 
unstructured. 

Once an application’s spaces have been defined, the 
blackboard hierarchy is defined using define-blackboards: 
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define-blackboards blackboards components 
[documentation] 

[Macro] 

Blackboards is a list of blackboard names. Components 
is a list of symbols naming those spaces and/or blackboards 
that will be the children of blackboards. For example: 

(def ine-blackboards (hyp-bb goal-bb) 
signal-location vehicle-location vehicle- track) > 

defines two blackboards, each having three spaces. 

III Specifying Blackboard Objects 

Once the blackboards and spaces have been specified, the 
blackboard objects are defined. In GBB, all blackboard 
objects are termed units. Hypotheses, goals, and knowledge 
source activation records, are typical examples of units. A 
unit is an aggregate data type similar to those created using 
the Common Lisp defstruct macro, but only units can 
be placed onto blackboard spaces. Units are defined using 
define-unit: 

define-unit name-and-options [Macro] 
[documentation] &KEY slots links 
indexes 

The name-and-options argument is exactly the same as 
defstruct with several extensions. First, a function to 
generate a name for each unit instance can be specified 
(using : NAME-FUNCTION). This function is called with the 
newly created unit instance after all slots in the unit have 
been initialized, but before the unit is placed onto the 
blackboard, The function returns a string that is used in 
a special read-only slot, name, that is implicitly defined if 
the :NAME-FUNCTION option is used. Second, it is often useful 
when interacting with a blackboard system to retrieve a 
unit by name rather than through a pattern match on 
its attributes. GBB provides this capability through a 
separate hash table of units (indexed by name) that can 
be dynamically created/destroyed as needed. Code for 
performing these activities is generated for a unit if the 
:HASH-UNIT option value is non-nil. Finally, the signaling 
of blackboard events associated with creating and deleting 
the unit can be controlled using the :EVENTS option. The 
: EVENTS argument is a list of : CREATION and/or : DELETION, 
indicating which events are to be signaled to the control 
shell for instances of this unit. The :EVENTS argument can 
also be nil, indicating that no unit events are to be signaled. 

The slots argument contains a list of slot-descriptions 
that are also identical to defstruct with one addition. 
Any slot can have a slot option :EVENTS that is a list 
of event-name and event-predicate-function pairs. Each 
event-predicated function is evaluated each time the value 
of the slot is modified. If the event-predicate-function 
returns true, the corresponding event-name is signaled. 

The links argument defines additional slots that hold 
interunit links. The name of the link is used as the 
new slot, name.2 By default, GBB forces all links to be 
bidirectional; each outgoing unit link must be defined with 
an accompanying inverse incoming link. GBB generates 
special modification functions (linkf for adding a single 

‘Note that the slot-names defined by lanks are implicitly 
slots and are not included in define-unit’s slots argument. 

defined as 

link, linkf-list for adding a list of links, and unlinkf and 
unlinkf -list for deleting links) that maintain consistent 
link bidirectionality. For example: 

(linkf (hyp$creating-ksi this-hyp) current-ksi) 

adds current-ksi as a new creating-ksi of this-hyp. 

Each link-description in links has the form: 

(link-name [: SINGULAR] 
{:REFLEXIVE 1 
(other-unit other-link [ : SINGULAR])} 

[ : EVENTS event-descriptions]). 

For example, here is a bidirectional link between hypothesis 
units: 

(supported-hyps (hyp supporting-hyps)) 
(supporting-hyps (hyp supported-hyps)). 

The keyword :SINGULAR is used to implement one-to-one, 
one-to-many, and many-to-one links (the default, is many- 
to-many). The keyword :REFLEXIVE is simply a shorthand 
for: 

(link-name (this-unit-name link-name)) . 

The optional :EVENTS argument is identical to the event,- 
predicate-function specification discussed for slots. 

The indexes argument specifies how the unit is mapped 
onto spaces (termed indexing) There must be a space 
dimension corresponding to each unit index (additional 
space dimensions are acceptable). Slots containing unit 
indexing information must be described by an index- 
description of the form: 

(index-name slot-name) 

where index-name is an indexing-structure specification 
that describes how to extract the dimensional indexes from 
slot-name. Indexing-structures are defined using define- 
index-structure discussed below. 

In its simplest form, an index is just the name of a 
define-unit slot defined in slots. For example, if a unit 
had a slot, named time containing a numeric value, GBB 
would have no problem placing that object on the time 
dimension of a space. Handling a slot value containing a 
range (such as the time span of a phrasal hypothesis) is 
also straightforward. Unfortunately, things are not always 
simple. One problem is that the indexes may be only 
a portion of a structured slot value, and GBB must be 
told how to extract the index information from the overall 
structure. A much more complex situation stems from the 
need to support composite-units. 

A composite unit is a unit that has multiple elements 
along one or more of its dimensions. An example of a 
composite unit is a track of vehicle sightings. Each sighting 
is an x,y point at a particular moment in time. One way 
to represent such a track is a time-location-list: 

((time1 (xl yl)) 
(time2 (x2 ~2)) 

(timeN’(xN yN))). 
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Such a unit does not occupy a single large volume of the 
blackboard, but rather a series of points connected along 
the time dimension. To indicate this, time-location-list 
must be declared as a composite index-structure. 

The information needed to decode a datatype into 
its dimensional indexes is specified using define-index- 
structure: 

define-index-structure name 
[documentation] 
&KEY type 
composite-type 

composite-index 
element-type indexes 

[Macro] 

The name argument is a symbol that is defined as 
a new. Lisp datatype. Type is used when the datatype 
to be decoded is a simple (non-composite) datatype and 
simply defines the new datatype name as a synonym for 
the existing datatype type. For a composite datatype, 
composite-type, composite-index, and element-type must be 
specified in place of type. The composite-type argument 
specifies the type of sequence that contains the individual 
index elements. Composite-index specifies the dimension 
connecting the composite elements (for example, time). 
Element-type specifies the datatype of the composed 
elements. Finally, indexes defines how to extract the 
dimensional indexes from each element. The format for 
each index-dimension specifier is: 

(dimension { :POINT field {(type field)}* 1 
: RANGE ( :MAX field {(type field)}*) 

(:MIN field {(type field)}*)}). 

For example: 

(define-index-structure TIME-LOCATION-LIST 
:COMPOSITE-TYPE list 
:COMPOSITE-INDEX time 
:ELEMENT-TYPE time-location 
:INDEXES ((time :POINT time) 

(x :POINT location (location x)) 
(y :POINT location (location y)))) 

In the above example, GBB would know how to access 
the x index from the first element of the composite datatype 
time-location-list as: 

(location$x (time-location$location 
(first time-location-list))). 

Note that all types and fields must be defined using 
defstruct or define-units. 

Returning to the indexes argument of define-unit, slot- 
name is the name of a slot (from the : SLOTS argument). The 
slot must have a :TYPE slot-option whose value is the name 
of an index-structure. Index-name must be an index in that 
index-structure. 

Here is a highly-abridged version of the hypothesis unit 
specification in the DVMT: 

(define-unit (HYP (:CONC-NAME ltHYP$fl) 
(:NAME-FUNCTION generate-hyp-name) 
(:HAsH-UNIT nil)) 

“HYP (Hypothesis) ‘I 

:SLOTS 
((belief 0 :TYPE belief) 

(classification) 
(sensor-id 0 :TYPE sensor-index) 
(time-location-list () :TYPE time-location-list)) 

:LINKS 
((consistency-hyp :SINGULAR (hyp consistent-hyps)) 

(consistent-hyps (hyp consistency-hyp :SINGULAR)) 
(supported-hyps (hyp supporting-hyps)) 
(supporting-hyps (hyp supported-hyps)) 
(creating-ksis (ksi created-hyps))) 

: INDEXES 
((time time-location-list) 

(x time-location-list) 
(y time-location-list) 
(classification classification)) 

IV Implementing the Database 

The previous sections presented the blackboard and unit 
specifications that must be specified by the application 
implementer. To this point, the specifications defined 
representational aspects of the application. This section 
describes how particular implementations of the black- 
board database are specified. We concentrate on ordered 
dimensions-enumerated dimensions are typically imple- 
mented as sets or hash tables. 

The implementation machinery for storing 
spaces is specified using define-unit-mapping: 

define-unit-mapping units spaces 
[documentation] &KEY 
indexes index-St rut t we 

units on 

[Macro] 

Units is a list of unit names, where each unit has 
identical index dimensions (as defined by the define-unit 
indexes argument). Spaces is the list of spaces whose 
implementation m&chinery is being defined. Note that the 
same unit type can be stored differently on different spaces, 
and that different unit types can be stored differently 
on the same space. Indexes is the list of indexes 
whose implementation machinery is being defined. Index- 
structu,re defines the implementation machinery. 

Simple hashing techniques do not work for ordered 
dimensions due to the neighborhood relationship among 
units. The storage structure must be able to quickly 
locate units within any specified range of a dimension. A 
standard solution is to divide the range of the dimension 
into a series of buckets. Each bucket contains those units 
falling within the bounds of the bucket. The number of 
buckets and their sizes provide a time/space tradeoff for 
unit insertion/retrieval. The bucket approach requires that 
a pattern range be converted into bucket indexes and that 
units retrieved from the first and last bucket be checked to 
insure that they indeed are within the pattern range. 

In a three-dimensional blackboard (x, y, and time) the 
bucket approach becomes more complicated. One approach 
would be to define a three-dimensional array of buckets. A 
second approach would be to define three one-dimensional 
bucket vectors and have the retrieval process intersect 
the result of retrieving in each dimension. To indicate 
that several d imensions should be stored together in one 
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array, they are grouped together with an extra level of 
parentheses. For example, ((time x y) > would specify a 
three-dimensional array, and (time (x y)) would specify a 
vector for time and a two dimensional array for (x, y). 

Here is a three one-dimensional vector example: 

(define-unit-mapping (unit1 unit21 (space11 
:INDEXES (time x y> 
:INDEX-STRUCTURE 
((time :SUBRANGES 

(START 5) 
(5 15 (:WIDTH 5)) 
(15 25 (:WIDTH 2)) 
(25 :END)) 

(x :SUBRANGES (:START :END (:WIDTH 5))) 
(y :SUBRANGES (ISTART :END (IWIDTH 2))))). 

V Instantiating the Blackboard 

Once the structure of the blackboard database has been 
specified with the functions presented above, it may be 
instantiated. This creates all the internal structures needed 
by GBB to actually store unit instances. Sometimes 
it is useful to be able to create several copies of the 
entire blackboard database or copies of parts of it. For 
example, to simulate a multiprocessor blackboard system 
one could instantiate a copy of the blackboard database for 
each processor. Instantiation is done via instantiate-bb- 
database: 

instantiate-bb-database replication-desc [Function] 

Replication-desc describes the blackboard hierarchy to 
be created. In the simplest case, it is a symbol that 
names the root of the tree to be instantiated.3 This 
would instantiate one copy of each of the nodes in the tree 
(all the leaves would be space instances and the interior 
nodes would be blackboard instances). The general form of 
replication-desc is: 

{name 1 (name [replication-count] [description . . .] I}. 

Name is the name of a blackboard or a space; replication- 
count is an integer specifying how many copies of the 
subtree to create; and description is a replication-desc for 
one of the components of the specified blackboard (or 
space). For example: 

(instantiate-bb-database 
‘(top-level 3 (goal-bb (level-one 2)) 

(hyp-bb (level-three 3)))) 

would create three copies of the blackboard database rooted 
at the blackboard top-level. Each copy would have 
two copies of level-one and three copies of level-three. 
Any defined blackboards or spaces not mentioned in the 
replication-desc would have one copy created. 

3Note that this need not be the root of the entire blackboard 
hierarchy but can be any node in the tree. This would allow, for 
example, different parts of the blackboard database to be distributed 
(and possibly replicated) across a network of processors. 

4The unit creation function is automatically generated by 
define-unit. 

VI Creating Units 

A unit is created and placed onto a space using the function 
make - unit-type :4 

make-unit-type {blackboard-path-element)+ [Function] 
{slot-keyword slot-value}* 

The blackboard-path-element arguments uniquely name 
the space that is to be searched. The simplest blackboard 
path is a space name. If a space name is not unique, it 
must be qualified by its parent blackboards’ names until 
it is unique. In addition, replicated blackboards and/or 
spaces must be appropriately indexed. 

Values for the newly created unit can be specified 
by slot-keyword slot-value pairs. Link slots can also be 
specified for the newly created unit, and GBB insures that 
inverse links are also created. 

In addition to creating the unit, make-unit-type con- 
structs the indexing information needed to retrieve the unit 
from the blackboard, invokes the name generation function 
(if specified in define-unit), and inserts the unit into the 
unit hash table (if unit hashing is enabled). 

VII Unit Retrieval (Pattern Matching) 

Blackboard systems spend a significant amount of time 
searching the database. Because retrieval is so important 
we have given the application programmer the means to 
make it as efficient as possible by eliminating candidate 
units early in the retrieval process. This is done in 
two ways. First, the user can specify specialized filter 
functions that are applied between the initial retrieval of 
units (such as from a set of buckets) and the subsequent 
checking of pattern inclusion. Second, the pattern language 
is rich enough to allow the application programmer to 
specify complex retrieval patterns that can be analyzed and 
optimized by GBB. The result is a reduction in retrieval 
time arid, equally important, a reduction in the amount of 
temporary storage and consing required for unit retrieval. 

The primitive function for retrieving units from spaces 
is find-units: 

find-units units {blackboard-path-element}+ 
&KEY pattern filter-before 
filter-after 

[Macro] 

The units argument identifies which unit types are to be 
retrieved. The blackboard-path-element arguments uniquely 
name the space that is to be searched. The simplest 
blackboard path is a space name. If a space name is 
not unique, it must be qualified by its parent blackboards’ 
names until it is unique. In addition, replicated blackboards 
and/or spaces must be appropriately indexed. 

The two keyword arguments filter-before and filter-after 

specify predicates to perform application specific filtering 
of the candidate units. The filter-before predicates are 
applied to the initially retrieved units before the pattern 
matching tests and are intended as a quick first test to 
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shrink the search space. The filter-after predicates are run 
after the pattern matching tests and can perform additional 
acceptance testing. 

The other keyword argument is the retrieval pattern 
that describes the criteria that must be met by the units 
retrieved. The simplest pattern is the keyword :ALL that 
matches all of the specified units on the specified space. 
A pattern can also be quite complex, represented by a list 
of pattern specifiers. Much of the richness in the pattern 
specifier language supports the retrieval of composite- 
units, and many of the options are meaningless unless the 
pattern’s index structure is a composite structure. 

A non-trivial pattern is based on a pattern-object that 
may be either an index element, a composite structure, or 
a concatenation of index elements or composite structures. 
Index structures that are concatenated together need not 
all be the same nor does the index structure of the pattern 
need to be the same as the index structure of the unit. 
GBB is able to efficiently map from one index structure 
representation to another. When a pattern needs to be 
constructed by splicing together components of different 
index structures GBB decomposes all patterns/objects into 
sequences of simple dimensional ranges to avoid expensive 
type conversions. 

The pattern-object specifies a region of the blackboard 
in which to look for the units. It is either a list of options 
or, to concatenate several index structures, a list whose first 
element is the symbol :CONCATENATE and whose remaining 
elements are lists of options. The keywords used to specify 
the pattern-object are: 

index-object: This is an index structure, for example, a 
time-location-list. 

index-type: This is the type of the index-object. It is the 
name of an index structure. 

select: This allows extraction of a subsequence of a 
composite structure based on the valzle of the 
composite index (for example, time). 

subseq: This allows extraction of a subsequence of a 
composite structure based on the position in the 
sequence (the same as selection of a subsequence of a 
vector). 

delta: This expands or contracts a range or expands a point 
into a range. 

displace: This allows the index-object to be translated 
along one or more of its dimensions. 

The other pattern specifier keywords are: 

element-match: This specifies how each index element 
from the unit is compared with the index element 
from the pattern-object. It may be one of :EXACT, 
:OVERLAPS, :INCLUDES, or :WITHIN. : EXACT means 
that the unit’s index element must exactly match 
the pattern’s. : INCLUDES means that the unit’s index 
element must include the pattern’s. :WITHIN means 
that the unit’s index element must be within the 
pattern’s, :OVERLAPS means that the unit’s index 
element must overlap with the pattern’s. 

before-extras and after-extras: The argument is a range 
that specifies the minimum and maximum number 
of index elements that the unit may have before (or 

after) the index elements mentioned in the puttern- 
object. The argument can also be :DONT-CARE that is 
short for the range (o MOST-POSITIVE-FIXNUM). 

match: This is an inclusive lower bound on the number 
of index elements that must match. This can 
either be expressed as a percentage of the length 
of the pattern-obl’ect, by saying ( : PERCENTAGE 50) or 
an absolute count by saying (:COUNT 51, or as a 
difference from the length of the pattern-object by 
saying (:ALL-BUT 2). 

mismatch: This is an inclusive upper bound on the number 
of index elements that are allowed to not match. 
“Not matching” means that the unit has an index 
element for that composite index (for example, time) 
that does not match (according to the : ELEMENT-MATCH 
criterion) with the index element in the puttern- 
object. This does not include index elements that 
appear in the p&tern-object but do not have a 
corresponding index element in the unit (call these 
skipped). (See Figure 2.) 

contiguous: If this is true, then the index elements that 
match must be contiguous along the composite index 
dimension. 

Pattern: 

Unit: 

-t 

Eztra Match Match Mismatch Skipped 

Figure 2: Composite Unit Matching Conditions 

For example: 

(find-units '(ghyp hyp) 'goal-bb 'vehicle-track 
:PATTERN 

T:PATTERN-OBJECT 
(:CONCATENATE 

(:INDEX-TYPE time-region-list 
:INDEX-OBJECT 

(#<TIME-REGION 3 (8 11) (4 6)> 
#<TIME-REGION 4 (6 10) (6 8)> 
#<TIME-REGION 5 (5 8) (8 9>>> 

:DISPLACE ((x 4) (y 2))) 
(:INDEX-TYPE time-location 

:INDEX-OBJECT 
#<TIME-LOCATION 6 4 lO> 

:DELTA ((x 2) (y 2)))) 
:ELEMENT-MATCH :INCLUDES 
:MATCH (ZPERCENTAGE 75) 
:MISMATCH 2 
:BEFORE-EXTRAS (0 5) 
:AFTER-EXTRAS (0 0) 
:CONTIGUOUS T) 

:FILTER-BEFORE '(sufficient-belief)). 

Anot her 
map-space: 

useful form of unit retrieval is provided by 
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map-space function units 
(blackboard-path-element}+ 

[Function] 

Function specifies a function that is to be applied 
to each type of unit (specified in units) that resides on 
the space specified by {blackboard-path-elements}+. Map- 
space insures that function is not applied more than once 
to any unit. 

VIII Summary and Future Developments 

High-performance blackboard-based AI systems demand 
much more than a multilevel shared database. An appli- 
cation’s blackboard may have thousands of instances of a 
few classes of blackboard objects scattered within its data- 
base. GBB provides an efficient blackboard development 
system by exploiting the detailed structure of the black- 
board in implementing primitives for inserting/retrieving 
blackboard objects. A control shell (implemented using 
GBB’s blackboard database support) is used to generate a 
complete application system. 

We have presented a brief description of the database 
subsystem of GBB. Length limitations have prevented a 
thorough discussion of all the details and rationale for 
particular decisions. We have tried to convey both the 
capabilities of GBB database support and some of the issues 
that must be faced in implementing a high-performance 
blackboard development system. 

Although GBB has been implemented and is in 
use, its development continues. Much effort is being 
applied to performing compile time optimizations of 
insertion/retrieva,l operations. The next phase of GBB 
development will be to extend the space specification and 
initialization aspects of GBB to support a blackboard 
database that is distributed among a network of processing 
nodes. 
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