
GBB: A Generic Blackboard
Development System

Daniel D. Corkill, Kevin Q. Gallagher, and Kelly E. Murray

Department of Computer and Information Science

University of Massachusetts

Amherst, Massachusetts 01003

Abstract
This paper describes a generic blackboard development

system (GBB) that unifies many characteristics of the
blackboard systems constructed to date. The goal of GBB
is to provide flexibility, ease of implementation, and efficient
execution of the resulting application system. Efficient
insertion/retrieval of blackboard objects is achieved using
a language for specifying the detailed structure of the
blackboard as well as how that structure is to be
implemented for a specific application. These specifications
are used to generate a blackboard database kernel tailored
to the application. GBB consists of two distinct
subsystems: a blackboard database development subsystem
and a control shell. This paper focuses on the database
support and pattern matching capabilities of GBB, and
presents the concepts and functionality used in providing
an efficient blackboard database development subsystem.

I Introduction

Historically, blackboard-based AI systems have been imple-
mented from scratch, often by layering a blackboard archi-
tecture on top of other support systems. This has fostered
a notion that blackboard-based architectures are difficult
to build and slow in execution. Despite this notion, AI sys-
tem implementers are increasingly considering blackboard
architectures for their applications. Unlike rule-based and
frame-based AI architectures where a variety of commer-
cial and academic system development shells are now avail-
able, an application developer considering an blackboard
approach remains largely unassisted.

A microcosm of this situation existed at the Univer-
sity of Massachusetts. Several large blackboard-based AI
systems had been implemented [1,2], and a number of ad-
ditional blackboard-based applications were being consid-
ered. We decided to pool our experience in implementing
blackboard systems into a common development system.
We felt that by consolidating our implementation resources
we could construct a generic system that would be more
efficient than any of the individual systems, if they all were
constructed from scratch. The goal for the blackboard de-
velopment system was to reduce the time required to im-
plement a specific application and to increase the execution
efficiency of the resulting implementation.

This research was sponsored in part by the National Science
Foundation under CER Grant DCR-8500332, by the National Science
Foundation under Support and Maintenance Grant DCR-8318776, and
by the Defense Advanced Research Projects Agency, monitored by the
Office of Naval Research under Contract NRO49-041.

This paper describes the resulting generic blackboard
development system, termed GBB (Generic Blackboard).
The GBB approach is unique in several aspects:

1. A strong emphasis was made on efficient insertion
and retrieval (pattern matching) of blackboard
objects. GBB was designed to efficiently implement
large blackboard systems containing thousands of
blackboard objects.

2. A non-procedural specification of the blackboard
and blackboard objects is kept separate from a
non-procedural specification of the insertion/retrieval
storage structure (Figure 1). This allows a “black-
board administrator” to easily redefine the black-
board database implementation without changing the
basic blackboard/object specification or any applica-
tion code. Such flexibility is not only important dur-
ing the initial development of the application system,
but also to maintain efficient database operation as
the scale and characteristics of the application evolve
during its use. Both specifications are used by the
GBB database code generator to produce an efficient
blackboard kernel tailored for the specific application.

3. We have defined a general composite blackboard
object for representing objects composed of discrete
elements (such as a phrase of words or a track of
vehicle sightings).

4. We have defined a pattern language for retrieving
simple and composite objects from the blackboard.
The application programmer has the ability to insert
additional procedural filtering functions into the basic
retrieval process. This can be significantly more
efficient than applying the filters to the results of the
retrieval.

5. ff clean separation was made between the database
support subsystem of GBB and the control level.

r

Non-Procedural
GBB

Application-Specific
Blackboard
Unit/Space - Database

Blackboard
Database

Specifications Code Generator Kernel

Application
Implementer

I 1

Figure 1: The GBB Database Subsystem

1008 / ENGINEERING

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

This allows different control shells to be implemented
using the common database support subsystem. (We
feel that it is premature to force a particular control
architecture on all blackboard applications.) The
interface between the two subsystems is a set of
blackboard events, signals indicating the creation,
modification, or deletion of blackboard objects. We
are implementing several control shells as part of
GBB, however an application implementer is free
to develop a different control shell using the GBB
database subsystem.

The emphasis on database efficiency separates GBB
from the generic blackboard architectures of Hearsay-III
[3] and BBl [4]. Although both Hearsay-III and BBl are
domain independent blackboard architectures, their focus is
on generalizing control capabilities. The major contribution
of GBB is not, in any extension of the technology of
blackboard architectures, but in the unification of existing
blackboard technologies into a development, system for
high-performance applications.

The remainder of the paper describes GBB in more
detail, focusing on its database support subsystem and
pattern matching capabilities. The implementation of
control shells will not be described. GBB is implemented in
Common Lisp and is now being tested in a Common Lisp
reimplementation of the Distributed Vehicle Monitoring
Testbed [I].

II Specifying the Blackboard Structure

An application implementer using the GBB system must
specify the structure of the blackboard and the objects that
will reside on it. In GBB, the blackboard is a hierarchical
structure composed of atomic blackboard pieces called
spaces.l For example, the blackboard abstraction levels
(phrase, word, syllable, etc.) of the Hearsay-II speech
understanding system would be implemented as spaces
in GBB. In addition to being composed of spaces, a
blackboard can also be composed of other blackboards
(themselves eventually composed of spaces). Finally,
blackboards and spaces can be replicated at blackboard
initialization time (discussed in Section V).

Spaces are defined first, using define-spaces:

define-spaces spaces [documentation] &KEY
dimensions

[Macro]

Spaces is a list of space names. Dimensions is a
of specifiers defining the dimensionality of spaces. list

The concept of space dimensionality is crucial to efficient
insertion/retrieval of blackboard objects, and is best
introduced by examples from existing systems.

In addition to having the blackboard subdivided into
multiple information levels, the levels of the Hearsay-
II speech understanding system (HS-II) [5] and the
Distributed Vehicle Monitoring Testbed (DVMT) [I] are
structured. That is, the blackboard objects are placed
onto appropriate areas within each level based on their
attributes. In HS-II, each level has one dimension, time.

‘In designing GBB, we used names that did not evoke preconceived
notions from previous blackboard systems. Hence the term “space”
rather than “level” and the term “unit” rather than “hypothesis” or
“object”.

In the DVMT, each level has three dimensions: time and
x, y position. In both systems, each level in the system
has the same dimensionality. This may not be the case for
other application areas, and GBB allows individual spaces
to have different dimensionality. (Spaces with differing
dimensionality are declared using multiple calls to define:
spaces .)

An important aspect of the level dimensionality in HS-
II and the DVMT is that each dimension is ordered. This
means that there is a notion of objects being “nearby” other
objects. In HS-II this idea of neighborhood allows retrieval
of words to extend a phrase whose begin time is “close” to
the phrase’s end time. In the DVMT, a vehicle classification
is made from a component frequency track by looking on
the blackboard for other component frequency tracks that
are positioned close to the original track throughout its
length.

In addition to ordered dimensions, GBB supports
enumerated dimensionality. An enumerated dim&ion
contains a fixed set of labeled categories. For example,
in the DVMT, a hypothesis classifying a vehicle could be
placed on a space containing a “classification” dimension,
where the dimension’s label set consists of vehicle types.
GBB allows a space to have both ordered and enumerated
dimensions.

The dimensionality of each space is an important part of
system design. Although GBB provides flexibility in spec-
ifying space dimensionality, the application implementer
must determine what is appropriate for the particular appli-
cation. It should be stressed that specifying the dimension-
ality of spaces is primarily an issue of representation-not
of dattibase efficiency. Efficiency decisions will be discussed
in Section IV.

Returning to the dimension specification in define-
space, each dimension is specified as a list where the first,
element is the name of the dimension and the remainder is
a list of keyword/value pairs describing the dimension. The
two defined keywords are :RANGE, corresponding to ordered
dimensions, and : ENUMERATED, corresponding to dimensions
of enumerated classes.

The argument, to :RANGE is a list of (lower-bound upper-
bound) or : INFINITE, indicating a range of (-co, +oo). The
argument to :ENUMERATED is the label set for the enumerated
dimension. For example:
(define-spaces (vehicle-location vehicle-track)

:DIMENSIONS
((time :RANGE (0 30))

(x :RANGE (-1000 1000))

(Y :RANGE (-1000 1000))
(classif ication

:ENUMERATED (Chevy Porsche toyota
VW-beetle unknown))))

defines two spaces with identical dimensionality. It is an
error to attempt placement of a blackboard object outside
the range of an ordered dimension or outside the label set
of an enumerated dimension. If dimensions is omitted
or nil, the space has no dimensionality. Such spaces are
unstructured.

Once an application’s spaces have been defined, the
blackboard hierarchy is defined using define-blackboards:

KNOWLEDGE REPRESENTATION / 1009

define-blackboards blackboards components
[documentation]

[Macro]

Blackboards is a list of blackboard names. Components
is a list of symbols naming those spaces and/or blackboards
that will be the children of blackboards. For example:

(def ine-blackboards (hyp-bb goal-bb)
signal-location vehicle-location vehicle- track) >

defines two blackboards, each having three spaces.

III Specifying Blackboard Objects

Once the blackboards and spaces have been specified, the
blackboard objects are defined. In GBB, all blackboard
objects are termed units. Hypotheses, goals, and knowledge
source activation records, are typical examples of units. A
unit is an aggregate data type similar to those created using
the Common Lisp defstruct macro, but only units can
be placed onto blackboard spaces. Units are defined using
define-unit:

define-unit name-and-options [Macro]
[documentation] &KEY slots links
indexes

The name-and-options argument is exactly the same as
defstruct with several extensions. First, a function to
generate a name for each unit instance can be specified
(using : NAME-FUNCTION). This function is called with the
newly created unit instance after all slots in the unit have
been initialized, but before the unit is placed onto the
blackboard, The function returns a string that is used in
a special read-only slot, name, that is implicitly defined if
the :NAME-FUNCTION option is used. Second, it is often useful
when interacting with a blackboard system to retrieve a
unit by name rather than through a pattern match on
its attributes. GBB provides this capability through a
separate hash table of units (indexed by name) that can
be dynamically created/destroyed as needed. Code for
performing these activities is generated for a unit if the
:HASH-UNIT option value is non-nil. Finally, the signaling
of blackboard events associated with creating and deleting
the unit can be controlled using the :EVENTS option. The
: EVENTS argument is a list of : CREATION and/or : DELETION,
indicating which events are to be signaled to the control
shell for instances of this unit. The :EVENTS argument can
also be nil, indicating that no unit events are to be signaled.

The slots argument contains a list of slot-descriptions
that are also identical to defstruct with one addition.
Any slot can have a slot option :EVENTS that is a list
of event-name and event-predicate-function pairs. Each
event-predicated function is evaluated each time the value
of the slot is modified. If the event-predicate-function
returns true, the corresponding event-name is signaled.

The links argument defines additional slots that hold
interunit links. The name of the link is used as the
new slot, name.2 By default, GBB forces all links to be
bidirectional; each outgoing unit link must be defined with
an accompanying inverse incoming link. GBB generates
special modification functions (linkf for adding a single

‘Note that the slot-names defined by lanks are implicitly
slots and are not included in define-unit’s slots argument.

defined as

link, linkf-list for adding a list of links, and unlinkf and
unlinkf -list for deleting links) that maintain consistent
link bidirectionality. For example:

(linkf (hyp$creating-ksi this-hyp) current-ksi)

adds current-ksi as a new creating-ksi of this-hyp.

Each link-description in links has the form:

(link-name [: SINGULAR]
{:REFLEXIVE 1
(other-unit other-link [: SINGULAR])}

[: EVENTS event-descriptions]).

For example, here is a bidirectional link between hypothesis
units:

(supported-hyps (hyp supporting-hyps))
(supporting-hyps (hyp supported-hyps)).

The keyword :SINGULAR is used to implement one-to-one,
one-to-many, and many-to-one links (the default, is many-
to-many). The keyword :REFLEXIVE is simply a shorthand
for:

(link-name (this-unit-name link-name)) .

The optional :EVENTS argument is identical to the event,-
predicate-function specification discussed for slots.

The indexes argument specifies how the unit is mapped
onto spaces (termed indexing) There must be a space
dimension corresponding to each unit index (additional
space dimensions are acceptable). Slots containing unit
indexing information must be described by an index-
description of the form:

(index-name slot-name)

where index-name is an indexing-structure specification
that describes how to extract the dimensional indexes from
slot-name. Indexing-structures are defined using define-
index-structure discussed below.

In its simplest form, an index is just the name of a
define-unit slot defined in slots. For example, if a unit
had a slot, named time containing a numeric value, GBB
would have no problem placing that object on the time
dimension of a space. Handling a slot value containing a
range (such as the time span of a phrasal hypothesis) is
also straightforward. Unfortunately, things are not always
simple. One problem is that the indexes may be only
a portion of a structured slot value, and GBB must be
told how to extract the index information from the overall
structure. A much more complex situation stems from the
need to support composite-units.

A composite unit is a unit that has multiple elements
along one or more of its dimensions. An example of a
composite unit is a track of vehicle sightings. Each sighting
is an x,y point at a particular moment in time. One way
to represent such a track is a time-location-list:

((time1 (xl yl))
(time2 (x2 ~2))

(timeN’(xN yN))).

1010 / ENGINEERING

Such a unit does not occupy a single large volume of the
blackboard, but rather a series of points connected along
the time dimension. To indicate this, time-location-list
must be declared as a composite index-structure.

The information needed to decode a datatype into
its dimensional indexes is specified using define-index-
structure:

define-index-structure name
[documentation]
&KEY type
composite-type

composite-index
element-type indexes

[Macro]

The name argument is a symbol that is defined as
a new. Lisp datatype. Type is used when the datatype
to be decoded is a simple (non-composite) datatype and
simply defines the new datatype name as a synonym for
the existing datatype type. For a composite datatype,
composite-type, composite-index, and element-type must be
specified in place of type. The composite-type argument
specifies the type of sequence that contains the individual
index elements. Composite-index specifies the dimension
connecting the composite elements (for example, time).
Element-type specifies the datatype of the composed
elements. Finally, indexes defines how to extract the
dimensional indexes from each element. The format for
each index-dimension specifier is:

(dimension { :POINT field {(type field)}* 1
: RANGE (:MAX field {(type field)}*)

(:MIN field {(type field)}*)}).

For example:

(define-index-structure TIME-LOCATION-LIST
:COMPOSITE-TYPE list
:COMPOSITE-INDEX time
:ELEMENT-TYPE time-location
:INDEXES ((time :POINT time)

(x :POINT location (location x))
(y :POINT location (location y))))

In the above example, GBB would know how to access
the x index from the first element of the composite datatype
time-location-list as:

(location$x (time-location$location
(first time-location-list))).

Note that all types and fields must be defined using
defstruct or define-units.

Returning to the indexes argument of define-unit, slot-
name is the name of a slot (from the : SLOTS argument). The
slot must have a :TYPE slot-option whose value is the name
of an index-structure. Index-name must be an index in that
index-structure.

Here is a highly-abridged version of the hypothesis unit
specification in the DVMT:

(define-unit (HYP (:CONC-NAME ltHYP$fl)
(:NAME-FUNCTION generate-hyp-name)
(:HAsH-UNIT nil))

“HYP (Hypothesis) ‘I

:SLOTS
((belief 0 :TYPE belief)

(classification)
(sensor-id 0 :TYPE sensor-index)
(time-location-list () :TYPE time-location-list))

:LINKS
((consistency-hyp :SINGULAR (hyp consistent-hyps))

(consistent-hyps (hyp consistency-hyp :SINGULAR))
(supported-hyps (hyp supporting-hyps))
(supporting-hyps (hyp supported-hyps))
(creating-ksis (ksi created-hyps)))

: INDEXES
((time time-location-list)

(x time-location-list)
(y time-location-list)
(classification classification))

IV Implementing the Database

The previous sections presented the blackboard and unit
specifications that must be specified by the application
implementer. To this point, the specifications defined
representational aspects of the application. This section
describes how particular implementations of the black-
board database are specified. We concentrate on ordered
dimensions-enumerated dimensions are typically imple-
mented as sets or hash tables.

The implementation machinery for storing
spaces is specified using define-unit-mapping:

define-unit-mapping units spaces
[documentation] &KEY
indexes index-St rut t we

units on

[Macro]

Units is a list of unit names, where each unit has
identical index dimensions (as defined by the define-unit
indexes argument). Spaces is the list of spaces whose
implementation m&chinery is being defined. Note that the
same unit type can be stored differently on different spaces,
and that different unit types can be stored differently
on the same space. Indexes is the list of indexes
whose implementation machinery is being defined. Index-
structu,re defines the implementation machinery.

Simple hashing techniques do not work for ordered
dimensions due to the neighborhood relationship among
units. The storage structure must be able to quickly
locate units within any specified range of a dimension. A
standard solution is to divide the range of the dimension
into a series of buckets. Each bucket contains those units
falling within the bounds of the bucket. The number of
buckets and their sizes provide a time/space tradeoff for
unit insertion/retrieval. The bucket approach requires that
a pattern range be converted into bucket indexes and that
units retrieved from the first and last bucket be checked to
insure that they indeed are within the pattern range.

In a three-dimensional blackboard (x, y, and time) the
bucket approach becomes more complicated. One approach
would be to define a three-dimensional array of buckets. A
second approach would be to define three one-dimensional
bucket vectors and have the retrieval process intersect
the result of retrieving in each dimension. To indicate
that several d imensions should be stored together in one

KNOWLEDGE REPRESENTATION / 10 11

array, they are grouped together with an extra level of
parentheses. For example, ((time x y) > would specify a
three-dimensional array, and (time (x y)) would specify a
vector for time and a two dimensional array for (x, y).

Here is a three one-dimensional vector example:

(define-unit-mapping (unit1 unit21 (space11
:INDEXES (time x y>
:INDEX-STRUCTURE
((time :SUBRANGES

(START 5)
(5 15 (:WIDTH 5))
(15 25 (:WIDTH 2))
(25 :END))

(x :SUBRANGES (:START :END (:WIDTH 5)))
(y :SUBRANGES (ISTART :END (IWIDTH 2))))).

V Instantiating the Blackboard

Once the structure of the blackboard database has been
specified with the functions presented above, it may be
instantiated. This creates all the internal structures needed
by GBB to actually store unit instances. Sometimes
it is useful to be able to create several copies of the
entire blackboard database or copies of parts of it. For
example, to simulate a multiprocessor blackboard system
one could instantiate a copy of the blackboard database for
each processor. Instantiation is done via instantiate-bb-
database:

instantiate-bb-database replication-desc [Function]

Replication-desc describes the blackboard hierarchy to
be created. In the simplest case, it is a symbol that
names the root of the tree to be instantiated.3 This
would instantiate one copy of each of the nodes in the tree
(all the leaves would be space instances and the interior
nodes would be blackboard instances). The general form of
replication-desc is:

{name 1 (name [replication-count] [description . . .] I}.

Name is the name of a blackboard or a space; replication-
count is an integer specifying how many copies of the
subtree to create; and description is a replication-desc for
one of the components of the specified blackboard (or
space). For example:

(instantiate-bb-database
‘(top-level 3 (goal-bb (level-one 2))

(hyp-bb (level-three 3))))

would create three copies of the blackboard database rooted
at the blackboard top-level. Each copy would have
two copies of level-one and three copies of level-three.
Any defined blackboards or spaces not mentioned in the
replication-desc would have one copy created.

3Note that this need not be the root of the entire blackboard
hierarchy but can be any node in the tree. This would allow, for
example, different parts of the blackboard database to be distributed
(and possibly replicated) across a network of processors.

4The unit creation function is automatically generated by
define-unit.

VI Creating Units

A unit is created and placed onto a space using the function
make - unit-type :4

make-unit-type {blackboard-path-element)+ [Function]
{slot-keyword slot-value}*

The blackboard-path-element arguments uniquely name
the space that is to be searched. The simplest blackboard
path is a space name. If a space name is not unique, it
must be qualified by its parent blackboards’ names until
it is unique. In addition, replicated blackboards and/or
spaces must be appropriately indexed.

Values for the newly created unit can be specified
by slot-keyword slot-value pairs. Link slots can also be
specified for the newly created unit, and GBB insures that
inverse links are also created.

In addition to creating the unit, make-unit-type con-
structs the indexing information needed to retrieve the unit
from the blackboard, invokes the name generation function
(if specified in define-unit), and inserts the unit into the
unit hash table (if unit hashing is enabled).

VII Unit Retrieval (Pattern Matching)

Blackboard systems spend a significant amount of time
searching the database. Because retrieval is so important
we have given the application programmer the means to
make it as efficient as possible by eliminating candidate
units early in the retrieval process. This is done in
two ways. First, the user can specify specialized filter
functions that are applied between the initial retrieval of
units (such as from a set of buckets) and the subsequent
checking of pattern inclusion. Second, the pattern language
is rich enough to allow the application programmer to
specify complex retrieval patterns that can be analyzed and
optimized by GBB. The result is a reduction in retrieval
time arid, equally important, a reduction in the amount of
temporary storage and consing required for unit retrieval.

The primitive function for retrieving units from spaces
is find-units:

find-units units {blackboard-path-element}+
&KEY pattern filter-before
filter-after

[Macro]

The units argument identifies which unit types are to be
retrieved. The blackboard-path-element arguments uniquely
name the space that is to be searched. The simplest
blackboard path is a space name. If a space name is
not unique, it must be qualified by its parent blackboards’
names until it is unique. In addition, replicated blackboards
and/or spaces must be appropriately indexed.

The two keyword arguments filter-before and filter-after

specify predicates to perform application specific filtering
of the candidate units. The filter-before predicates are
applied to the initially retrieved units before the pattern
matching tests and are intended as a quick first test to

1012 / ENGINEERING

shrink the search space. The filter-after predicates are run
after the pattern matching tests and can perform additional
acceptance testing.

The other keyword argument is the retrieval pattern
that describes the criteria that must be met by the units
retrieved. The simplest pattern is the keyword :ALL that
matches all of the specified units on the specified space.
A pattern can also be quite complex, represented by a list
of pattern specifiers. Much of the richness in the pattern
specifier language supports the retrieval of composite-
units, and many of the options are meaningless unless the
pattern’s index structure is a composite structure.

A non-trivial pattern is based on a pattern-object that
may be either an index element, a composite structure, or
a concatenation of index elements or composite structures.
Index structures that are concatenated together need not
all be the same nor does the index structure of the pattern
need to be the same as the index structure of the unit.
GBB is able to efficiently map from one index structure
representation to another. When a pattern needs to be
constructed by splicing together components of different
index structures GBB decomposes all patterns/objects into
sequences of simple dimensional ranges to avoid expensive
type conversions.

The pattern-object specifies a region of the blackboard
in which to look for the units. It is either a list of options
or, to concatenate several index structures, a list whose first
element is the symbol :CONCATENATE and whose remaining
elements are lists of options. The keywords used to specify
the pattern-object are:

index-object: This is an index structure, for example, a
time-location-list.

index-type: This is the type of the index-object. It is the
name of an index structure.

select: This allows extraction of a subsequence of a
composite structure based on the valzle of the
composite index (for example, time).

subseq: This allows extraction of a subsequence of a
composite structure based on the position in the
sequence (the same as selection of a subsequence of a
vector).

delta: This expands or contracts a range or expands a point
into a range.

displace: This allows the index-object to be translated
along one or more of its dimensions.

The other pattern specifier keywords are:

element-match: This specifies how each index element
from the unit is compared with the index element
from the pattern-object. It may be one of :EXACT,
:OVERLAPS, :INCLUDES, or :WITHIN. : EXACT means
that the unit’s index element must exactly match
the pattern’s. : INCLUDES means that the unit’s index
element must include the pattern’s. :WITHIN means
that the unit’s index element must be within the
pattern’s, :OVERLAPS means that the unit’s index
element must overlap with the pattern’s.

before-extras and after-extras: The argument is a range
that specifies the minimum and maximum number
of index elements that the unit may have before (or

after) the index elements mentioned in the puttern-
object. The argument can also be :DONT-CARE that is
short for the range (o MOST-POSITIVE-FIXNUM).

match: This is an inclusive lower bound on the number
of index elements that must match. This can
either be expressed as a percentage of the length
of the pattern-obl’ect, by saying (: PERCENTAGE 50) or
an absolute count by saying (:COUNT 51, or as a
difference from the length of the pattern-object by
saying (:ALL-BUT 2).

mismatch: This is an inclusive upper bound on the number
of index elements that are allowed to not match.
“Not matching” means that the unit has an index
element for that composite index (for example, time)
that does not match (according to the : ELEMENT-MATCH
criterion) with the index element in the puttern-
object. This does not include index elements that
appear in the p&tern-object but do not have a
corresponding index element in the unit (call these
skipped). (See Figure 2.)

contiguous: If this is true, then the index elements that
match must be contiguous along the composite index
dimension.

Pattern:

Unit:

-t

Eztra Match Match Mismatch Skipped

Figure 2: Composite Unit Matching Conditions

For example:

(find-units '(ghyp hyp) 'goal-bb 'vehicle-track
:PATTERN

T:PATTERN-OBJECT
(:CONCATENATE

(:INDEX-TYPE time-region-list
:INDEX-OBJECT

(#<TIME-REGION 3 (8 11) (4 6)>
#<TIME-REGION 4 (6 10) (6 8)>
#<TIME-REGION 5 (5 8) (8 9>>>

:DISPLACE ((x 4) (y 2)))
(:INDEX-TYPE time-location

:INDEX-OBJECT
#<TIME-LOCATION 6 4 lO>

:DELTA ((x 2) (y 2))))
:ELEMENT-MATCH :INCLUDES
:MATCH (ZPERCENTAGE 75)
:MISMATCH 2
:BEFORE-EXTRAS (0 5)
:AFTER-EXTRAS (0 0)
:CONTIGUOUS T)

:FILTER-BEFORE '(sufficient-belief)).

Anot her
map-space:

useful form of unit retrieval is provided by

KNOWLEDGE REPRESENTATION / 10 1 j

map-space function units
(blackboard-path-element}+

[Function]

Function specifies a function that is to be applied
to each type of unit (specified in units) that resides on
the space specified by {blackboard-path-elements}+. Map-
space insures that function is not applied more than once
to any unit.

VIII Summary and Future Developments

High-performance blackboard-based AI systems demand
much more than a multilevel shared database. An appli-
cation’s blackboard may have thousands of instances of a
few classes of blackboard objects scattered within its data-
base. GBB provides an efficient blackboard development
system by exploiting the detailed structure of the black-
board in implementing primitives for inserting/retrieving
blackboard objects. A control shell (implemented using
GBB’s blackboard database support) is used to generate a
complete application system.

We have presented a brief description of the database
subsystem of GBB. Length limitations have prevented a
thorough discussion of all the details and rationale for
particular decisions. We have tried to convey both the
capabilities of GBB database support and some of the issues
that must be faced in implementing a high-performance
blackboard development system.

Although GBB has been implemented and is in
use, its development continues. Much effort is being
applied to performing compile time optimizations of
insertion/retrieva,l operations. The next phase of GBB
development will be to extend the space specification and
initialization aspects of GBB to support a blackboard
database that is distributed among a network of processing
nodes.

References

11 Victor R. Lesser and Daniel D. Corkill.
The Distributed Vehicle Monitoring Testbed: A tool for

investigating distributed problem solving networks.
AI Muguzine, 4(3):15-33, Fall 1983.

21 Allen R. Hanson and Edward M. Riseman.
VISIONS: A computer system for interpreting scenes.

In Allen R. Hanson and Edward M. Riseman, editors,
Computer Vision Systems, pages 303-333, Academic
Press, 1978.

(31 Lee D. Erman, Philip E. London, and Stephen F. Fickas.
The design and an example use of Hearsay-III.
In Proceedings of the Seventh International Joint

Conference on Artificial Intelligence, pages 409-415,
Tokyo, Japan, August 1981.

P

[5

Barbara Hayes-Roth.
A blackboard architecture for control.
Artificial Intelligence, 26(2):251-321, March 1985.
Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser,

and D. Raj Reddy.
The Hearsay-II speech-understanding system: Integrat-

ing knowledge to resolve uncertainty.
Computing Surveys, 12(2):213-253, June 1980.

10 14 / ENGINEERING

